
Uitnodiging
Voor het bijwonen
van de openbare

verdediging
van mijn proefschrijft:

On the realizability
of hardware microthreading

Woensdag 5 september 2012

om 10:00

Anietenkapel

Oudezijds Voorburgwal 231

1012 EZ Amsterdam

On the realizability
of hardware microthreading

Raphael ‘kena’ Poss

Revisiting the general-purpose processor interface:
consequences and challenges

O
n
 th

e
 re

a
liza

b
ility

 o
f h

ard
w
are

 m
icro

th
re

a
d
in

g
R
ap

h
ael ‘ken

a’ P
oss

Multi-core chips are currently in the spotlight as a potential means to over-
come the limits of frequency scaling for performance increases in processors. In
this direction, the CSA group at the University of Amsterdam is investigating
a new design for processors towards faster and more efficient general-purpose
multi-core chips. However this design changes the interface between the hard-
ware and software, compared to existing chips, in ways that have not been dared
previously. Consequently, the concepts underlying existing operating systems and
compilers must be adapted before this new design can be fully integrated and
evaluated in computing systems.

This dissertation investigates the impact of the changes in the machine inter-
face on operating software and makes four contributions. The first contribution
is a comprehensive presentation of the design proposed by the CSA group. The
second contribution is formed by technology that demonstrates that the chip can
be programmed using standard programming tools. The third contribution is a
demonstration that the hardware components can be optimized by starting to
implement operating software during the hardware design instead of afterwards.
The fourth contribution is an analysis of which parts of the hardware design
will require further improvements before it can be fully accepted as a general-
purpose platform. The first conclusion is a confirmation that the specific design
considered can yield higher performance at lower cost with relatively minimal
implementation effort in software. The second conclusion is that the processor
interface can be redefined while designing multi-core chips as long as the design
work is carried out hand in hand with operating software providers.

Stellingen

behorende bĳ het proefschrift

On the realizability
of hardware microthreading

1. General-purpose computers are, like stem cells for living organisms, key to the
perpetuation of computer engineering. (Chapter 1)

2. Het samenstellen van verwerkingseenheden eerder ontworpen voor alleenstaand
gebruik leidt tot een minder efficiënt multi-processor ontwerp. (Deel I & III)

3. Ingenuity and expediency are effective complements to analysis and synthesis.
(Chapter 6)

4. De menselijke acceptatie van wĳzigingen in de softwareinterface van verwer-
kingseenheden vereist een voorzichtige deconstructie van voormalige aannames
en modellen; de bĳbehorende aanpassingen in besturingssoftware zĳn in ver-
gelĳking triviaal. (Deel II)

5. Amdahl’s suggestion for a balanced design, i.e. a chip should provision a bit
per second of external bandwidth for every instruction per second, should also
apply to the bandwidth between any two individual hardware threads in multi-
processors. (Chapters 9 & 13)

6. Creativiteit en ĳver zĳn zelden samen aanwezig in één individu; het succes-
volle uitbrengen van innovatie in informatica vereist dus een symbiose tussen
verschillende persoonlĳkheden. (Dit proefschrift en het hele gebied van computerarchi-
tectuur)

7. The advent of general-purpose computers has altered the limitations of the
human condition in ways both unforeseen and still poorly understood.

8. Het theoretische bestuderen van programmeertalen en computermodellen le-
vert alleen kennis op over hoe mensen nadenken, niet over het gedrag van
programma’s.

9. Free and unencumbered information duplication is currently our sole means to
avoid a digital dark age and leave a trace in history.

10. Videospelletjes en hun beleving door spelers zullen worden erkend door toekom-
stige historici als een baanbrekende nieuwe kunstvorm en een van de grootste
prestaties van de mensheid.

On the realizability
of hardware microthreading

Revisiting the general-purpose processor interface:
consequences and challenges

This research was supported by the European Union
under grant numbers FP7-215216 (Apple-CORE) and FP7-248828 (ADVANCE).

Copyright © 2012 by Raphael ‘kena’ Poss, Amsterdam, The Netherlands.
This work is licensed under the Creative Commons Attribution-Non-Commercial
3.0 Netherlands License. To view a copy of this license, visit the web page at
http://creativecommons.org/licenses/by-nc/3.0/nl/
or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain
View, California, 94041, USA.

Cover photograph by Éole Wind – http://eole.me

Typeset by LATEX.
Printed and bound by Gildeprint Drukkerijen.

ISBN: 978-94-6108-320-3

http://creativecommons.org/licenses/by-nc/3.0/nl/
http://eole.me

On the realizability
of hardware microthreading

Revisiting the general-purpose processor interface:
consequences and challenges

Academisch Proefschrift

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom

ten overstaan van een door het college voor promoties ingestelde

commissie, in het openbaar te verdedigen in de Agnietenkapel

op woensdag 5 september 2012, te 10:00 uur

door

Raphael ‘kena’ Poss

geboren te Aix-en-Provence, Frankrijk.

Promotiecommissie:

Promotor: Prof. dr. C.R. Jesshope

Overige leden: Prof. dr. M. Brorsson
Dr. B. Chamberlain
Dr. C.U. Grelck
Prof. dr. P. Klint
Prof. dr. ir. C.T.A.M. de Laat
Prof. dr. S.-B. Scholz

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Even if there needs to be a shift
at some point from the user’s
perspective—your goal is to make
that shift as smooth as possible.

Daniel Prokesch

Contents

Contents i

List of Figures iii

List of Tables vii

List of Side Notes ix

Listings xi

Summary 1

Samenvatting in het Nederlands 5

Acknowledgements 9

Preface 11

1 Introduction 15

I Hardware microthreading: exploring the designer’s mind 31

2 Trade-offs in microprocessor design 33

3 Architecture overview 43

4 Machine model & hardware interface 59

II Foreground contribution: programmability 81

5 System perspective 83

6 Programming environment 97

7 Disentangling memory and synchronization 115

8 Visible synchronizer windows 137

9 Thread-local storage 147

10 Concurrency virtualization 163

11 Placement and platform partitioning 175

12 Issues of generality 187

i

ii CONTENTS

III Applications and experiences 201

13 Core evaluation 203

14 System-level issues 223

15 Conclusions and future work 235

16 Epilogue on the outer question 243

IV Appendices 247

A Information sources for the hardware interface 249

B Optimal control word size analysis 251

C Running example with machine code 253

D Machine instructions 259

E On-chip placement and distribution 263

F Semantics of C objects 269

G Original language interface 277

H Approach to code generation 293

I SL Language specification 317

J QuickSort example 333

K Mandelbrot set approximation 339

Acronyms 341

Related publications by the author 343

Bibliography related to hardware microthreading 345

General bibliography 349

Index 367

List of Figures

1.1 Activities related to science. 17
1.2 Composition of parts to entire computing systems. 18
1.3 Scope of the answers to the outer question. 30

2.1 Choice between smaller or larger cores at equal logic and energy budget. 35
2.2 Room for sequential performance at equal area and energy budget. 36
2.3 Choice between specialized functions or general-purpose cores at equal logic and

energy budget. 37

3.1 Microthreaded extensions on a typical in-order, single-issue 6-stage RISC pipeline. 45
3.2 Example suspended thread list. 46
3.3 Using asynchronous FUs for latency tolerance. 46
3.4 Thread states in the Niagara architecture. 49
3.5 Thread states in the microthreaded architecture (simplified). 49
3.6 Thread states in the microthreaded architecture. 50
3.7 Support for incoming external asynchronous events. 50
3.8 Example proposed distributed cache topology. 54
3.9 32-core tile of microthreaded processors. 57

4.1 Example window mapping for two sibling threads with global and local synchro-
nizers. 68

4.2 Example window mapping for three sibling threads with local and shared syn-
chronizers. 69

4.3 Alternatives for mapping global synchronizers. 70
4.4 Alternatives for mapping shared synchronizers. 70
4.5 History of the hardware platform implementations. 78

5.1 User-provider relationship in a computing ecosystem. 86
5.2 Idealized, non-realistic vision of the “abstraction stack.” 86
5.3 Subset of actual ecosystem interactions in the IT service industry. 86
5.4 The Apple-CORE ecosystem and its technology. 90
5.5 Extension of an FPGA prototype into a complete system. 93
5.6 Extension of an emulation platform into a complete system. 93

6.1 Translation of SL primitives for bulk creation (simplified). 103
6.2 Overview of the placeholders in the SL tool driver. 104
6.3 Combinations of the SL tool chain with various underlying C compilers. 105

iii

iv LIST OF FIGURES

6.4 Example uses of sl_create...sl_sync. 107
6.5 Translation of SL primitives for detached creation (simplified). 108

8.1 Register allocation as a function of the number of available register names. . . . 140
8.2 Effect of various numbers of available register names on the outcome of register

allocation with a simple function updating a variable in memory. 140
8.3 Maximum allowable values of G, S, L for various values of X, with M = 31. . . 143
8.4 Maximum allowable values of G, S, L for various values of X, with M = 31. . . 144

9.1 Potential bank and line conflicts with 64-bit addresses, 1024 cores, 256 contexts
per core. 154

9.2 Effect of TLS address conflicts with direct mapping. 155
9.3 Reduced TLS address conflicts with XOR-based randomization. 155
9.4 Address bit shuffling for non-TLS pages. 156
9.5 Address bit shuffling to aggregate distinct small TLS spaces into shared physical

pages. 156
9.6 Address bit shuffling for non-TLS pages (virtual processes). 158

10.1 Execution of QuickSort on 1 core. 171
10.2 Execution of QuickSort on 1 core (threshold: 16 elements). 172

11.1 Parallel reduction using explicit placement, for problem size n = 16 and a virtual
core cluster containing 4 cores. 179

11.2 Performance of the Livermore loop 3. 181

13.1 Implementing the Livermore loop benchmarks using our proposed framework. . 206
13.2 Time to result (performance) for the Livermore loop 7. 208
13.3 Instructions per cycle (utilization) for the Livermore loop 7. 208
13.4 Floating-point performance for the Livermore loop 7. 209
13.5 Actual thread sizes in the example heterogeneous workload. 211
13.6 Performance of the example heterogeneous workload. 211
13.7 Per-core activity for the example heterogeneous workload running on 32 cores. . 212
13.8 QuickSort performance on the proposed platform. 214
13.9 Different logical thread distributions for QuickSort. 214
13.10QuickSort performance using automatic load balancing. 215
13.11Per-core activity for the example heterogeneous workload with a 1ms deadline. 216
13.12Throughput for one stream on one core. 217
13.13Combined throughput for 1-8,16 streams per core on 1-16 cores. 217
13.14Pipeline under-utilization for fig. 13.13. 217

14.1 Possible locations for the address translation logic on chip. 227
14.2 Forced synchronization through sequential APIs. 230

15.1 Features of the machine interface across CMP designs. 237

C.1 Observed synchronizer sharing between a creating thread and a family of 3 threads.258
C.2 Observed register sharing between a creating thread and a family of 3 threads. . 258

G.1 Control flow graph of the function “bar” in listing G.8 291

LIST OF FIGURES v

H.1 Position of the assembly post-processor in the tool chain. 295
H.2 Position of the code transformer in the tool chain. 299
H.3 The “slc” compilation pipeline and driver. 315

I.1 Channel topology in a parallel thread family. 331
I.2 Channel topology in a thread family with irregular schedule. 331

J.1 Baseline: purely sequental algorithm as one thread. 333
J.2 Execution on 1 core with 1 family context. 336
J.3 Execution on 1 core with 3 family contexts. 336
J.4 Execution on 1 core with 31 family contexts. 337
J.5 Execution on 1 core with 31 family contexts, using Algorithm J.1 and a threshold

on concurrency creation. 337

List of Tables

1.1 Symbols used to mark technical contributions throughout our dissertation. . . . 29
1.2 Overview of technical contributions per chapter. 30

3.1 Control events to the TMU. 57
3.2 Private state maintained by the TMU. 58
3.3 Logical sub-units in the TMU. 58

4.1 Features of existing general-purpose RISC ISAs. 74
4.2 Characteristics of various implementations. 78

5.1 Possible target ecosystems for the proposed architecture. 89

6.1 Main constructs of the resulting SL language. 104
6.2 Requirements satisfied by existing C library implementations. 112

8.1 Calling conventions on existing general-purpose processors. 144

9.1 Trade-offs of context-based TLS partitioning . 152
9.2 TLS size per thread with the static/computed scheme. 153
9.3 Maximum possible TLS sizes with the deferred/computed scheme. 154
9.4 Amount of TLS storage provided for each thread per virtual page. 157
9.5 Protocols to provision TLS for one bulk creation. 161

11.1 Core addressing operators in the SL library. 178

13.1 System characteristics. 209

14.1 Implicitly carried dependencies in C/POSIX APIs. 229

A.1 Example programs from the architecture test suite, December 2008 250
A.2 Academic publications explaining the architecture, December 2008 250

B.1 Impact of control bits on I-cache line utilization. 251
B.2 Number of instructions per control word that maximize I-line utilization. 251

C.1 Memory image for the program “fibo”, late 2008 253
C.2 Continuation of table C.1 . 256

D.1 Description of the family control instructions. 259

vii

viii LIST OF TABLES

D.2 Description of the register-to-register communication instructions. 260
D.3 Description of the bulk context management instructions. 260
D.4 Description of miscellaneous instructions. 260
D.5 MT instruction set extensions implemented in UTLEON3. 260
D.6 General MT extensions for a SPARC v8 instruction set. 261
D.7 MT extensions for the DEC/Alpha AXP 24264 instruction set. 262

E.1 Address transformation for allocation messages on chip. 265
E.2 Execution cost of the placement primitives. 267

G.1 Example programs using the proposed C extensions, December 2008 278
G.2 Academic publications related to the C language extensions, December 2008 . . 278

H.1 Substitution table for register names. 297
H.2 Substitution table for FP register names. 311
H.3 Supported compilation targets at the time of publication of this book. 316

List of Side Notes

1.1 Fundamental sciences are also application-driven. 18
1.2 The second rise of separated computing. 23
1.3 Embedded/specialized vs. general-purpose computers. 23
1.4 Example functions that can be made primitive recursive. 24
1.5 Example functions that are not primitive recursive. 24

3.1 Active, ready and waiting queues. 46
3.2 New instruction vs. control bits for thread termination. 49
3.3 Fine-grained thread states. 51
3.4 Using a distributed cache between microthreaded cores. 54
3.5 Sub-events for remote creations. 56

4.1 Logical index sequence. 67
4.2 Purpose and motivation of “shared” synchronizers. 69
4.3 Thread switching not specified by control bits. 72
4.4 Switching and thread termination as instructions. 72

6.1 Contenders to C to pitch new architectural designs. 99

7.1 About implicit communication. 116

9.1 Support for heap-based dynamic allocation. 152

10.1 Static vs. dynamic allocation failure management. 171

12.1 Implementation-independent interleaving. 189

13.1 About the relevance of the Livermore loops. 205
13.2 Description of the example heterogeneous workload. 211
13.3 Choice of QuickSort for evaluation. 213

E.1 Processor address decoding in the reference implementation. 266
E.2 About the distribution of families with “shared” channels. 266

F.1 About the concept of objects in the C language specification. 270
F.2 About immutable objects. 270
F.3 About objects without an address. 270
F.4 About object sizes. 270

ix

x LIST OF SIDE NOTES

F.5 About array item properties. 271
F.6 About multiple accesses between sequence points. 271
F.7 About the initial char representation of objects. 271
F.8 About valid addresses one past the last char. 271
F.9 Objects without primary designators. 273
F.10 Primary designator aliases for immutable objects. 273
F.11 About array designators in function parameter lists. 274

G.1 Attempt to constrain the well-formedness of programs. 283
G.2 About the input availability of “shareds” after writes. 286

H.1 About the avoidance of a C syntax parser. 300
H.2 Preservation of line number markers in M4. 300

I.1 About the compatibility of our implementation. 319
I.2 About the syntax of “sl_create” and “sl_sync”. 328
I.3 About pointers to thread functions. 328
I.4 Defining the index sequence in the abstract semantics. 330

Listings

7.1 Two unrelated threads. 127
7.2 Two unrelated threads with a race condition. 128
7.3 Independent ordering of loads/stores to different addresses. 128
7.4 Implementation of twoprint, insufficiently synchronized. 129
7.5 Proper synchronization for twoprint. 129
7.6 Invalid busy waiting for a value. 129
7.7 Invalid busy waiting on a pointer. 130

8.1 Code fragment using multiple virtual “global” channels. 145
8.2 Translation of listing 8.1 to use only one “global” channel. 145

9.1 Code sequence to access TLS on UTLEON3. 160

10.1 Automatic serialization code for listing H.21 (simplified). 168
10.2 Generated assembly code for listing 10.1. 169

11.1 Concurrent SL code for the Livermore loop 3 (inner product). 179
11.2 Concurrent SL code for the Livermore loop 3, optimized. 180

13.1 FORTRAN code for the Livermore loop 7. 205
13.2 Sequential C code for the Livermore loop 7. 206
13.3 SAC code for the Livermore loop 7. 206
13.4 Concurrent SL code for the Livermore loop 7. 207

E.1 Placement computation that extracts the size from a virtual cluster address. 266
E.2 Placement computation that extracts the absolute address of the first core in

a virtual cluster. 267
E.3 Placement computation that divides the current cluster in two and addresses

either the upper or lower half. 267
E.4 Placement computation to place all the created thread at a core offset P

within the local cluster. 267
E.5 Placement computation that divides the current cluster in two and addresses

the other half relative to the current core. 268
E.6 Placement computation to place all the created thread at the next or previous

core within the local cluster. 268

F.1 Const designator to a mutable object. 276

xi

xii LISTINGS

G.1 Example code using the “create” construct and separate thread function to
scale a vector. 279

G.2 Example thread program using a channel interface specification. 280
G.3 Example use of the “innerprod” thread program. 282
G.4 Using the “address of” operator on a channel endpoint. 284
G.5 Pointer aliasing a channel endpoint. 287
G.6 Implicit endpoint type conversion. 288
G.7 Multiple orderings of the same endpoint names. 288
G.8 Example program fragment using “create” . 290
G.9 Example program fragment using the “create” construct. 292

H.1 Hand-crafted thread program. 294
H.2 Hand-crafted C code. 294
H.3 Alpha assembly generated using GNU CC. 295
H.4 C code with strategically placed macro uses. 296
H.5 Macro definitions for thread programs. 296
H.6 Externally instrumented Alpha assembly. 297
H.7 Automatically edited Alpha assembly. 298
H.8 Edited Alpha assembly with fewer used local registers. 298
H.9 Macro definitions necessary for different interface arities. 299
H.10 Code using multiple channel endpoints. 300
H.11 Generated assembly source for the “scal” thread program. 300
H.12 Source code for the “innerprod” thread program. 303
H.13 Generated assembly for the “innerprod” thread program. 303
H.14 Prototype “create” construct. 304
H.15 Example use of “createsync.” . 304
H.16 Generated asembly from listing H.15. 305
H.17 Example use of “createsync” with omitted parameters. 305
H.18 Generated assembly for listing H.17. 305
H.19 Support for “global” channel endpoints in “createsync.” 306
H.20 Extension of listing H.19 for “shared” channels. 306
H.21 Example vector-vector product kernel. 307
H.22 Generated code for listing H.21, using the “fused” creation interface. 308
H.23 Generated code for listing H.21, using the “detached” creation interface. . . . 310
H.24 Syntax expansions for a sequential schedule. 311
H.25 Substitution for SPARC’s save. 314
H.26 Substitution for SPARC’s restore. 314

J.1 QuickSort benchmark in SL, classic algorithm. 334
J.2 QuickSort benchmark in SL, families of two threads. 335

K.1 Computation kernel executed by each logical thread. 339
K.2 Workload implementation using an even distribution. 339
K.3 Workload implementation using a round-robin distribution. 340

Summary

Ever since the turn of the century, fundamental energy and scalability issues have pre-
cluded further performance improvements in general-purpose uniprocessor chips. To “cut
the Gordian knot,” [RML+01] the industry has since shifted towards multiplying the num-
ber of processors on chip, creating increasing larger Chip Multi-Processors (CMPs) by
processor counts, to take advantage of efficiency gains made possible by frequency scal-
ing [RML+01, SA05]. Yet so far most general-purpose multi-core chips have been designed
by grouping together processor cores that had been originally designed for single core, mostly
single-threaded processor chips. After a decade of renewed interest in CMPs, the architec-
ture community is barely coming to terms with the realization that traditional cores do not
compose to create easily programmable general-purpose multi-core platforms.

Instead, the Computer Systems Architecture group at the University of Amsterdam
proposes a general machine model and concurrency control protocol, relying on a novel in-
dividual core design with dedicated hardware support for concurrency management across
multiple cores [PLY+12]. The key features of the design, described as “hardware microthread-
ing,” are asynchrony, i.e. the ability to tolerate operations with irregular and long latencies,
fine-grained hardware multithreading, a scale-invariant programming model that captures
clusters on chip of arbitrary sizes as single programming resources, and the transparent
performance scaling of a single binary code across multiple cluster sizes. Its machine in-
terface does not only provide native support for dataflow synchronisation and imperative
parallel programming; it also departs from the traditional RISC vision by allowing programs
to configure the number of hardware registers available by thread, replacing interrupts by
thread creation as a means to signal asynchronous events, relying on a single virtual address
space, and discouraging the use of main memory as an all-purpose synchronization device,
preferring instead a specialized inter-core synchronization protocol.

The adoption of a different machine interface comes at the cost of a challenge: most
operating software in use today to drive general-purpose hardware, namely operating sys-
tems, programming language run-time systems and code generators in compilers have been
developed with the assumption that the underlying platform can be modelled by traditional
RISC cores with individual MMUs grouped around a shared memory that can be used for
synchronization. A port of existing operating software towards the proposed architecture is
therefore non-trivial, because the machine interface conceptually diverges from established
standards. In this dissertation, we investigate the impact of these conceptual changes on
operating software.

1

2 SUMMARY

We propose namely answers to the following questions:

1. Is it possible to program a chip with the proposed machine interface using an already
accepted general-purpose programming language such as C?

2. What are the abstract features of the proposed machine interface that make it qual-
itatively different from contemporary general-purpose processor chips from the per-
spective of operating software?

The first question is relevant because the availability of existing programming languages
is a prerequisite for adoption of a new general-purpose architecture. Moreover, support
for C must be available before most higher-level software environments can be reused. For
this question our answer is generally positive. By constructing a C compiler and parts of
the accompanying language library, we demonstrate that programs following the platform
independence guidelines set forth by the designers of C can be reused successfully on multiple
instances of the proposed architecture. We also demonstrate how to extend the C language
with new primitives that can drive the proposed hardware-based concurrency management
protocol. However, we acknowledge that most programs also use system services and make
assumptions about the topology and components of the underlying platform. We discuss
why some of these assumptions cannot yet be adapted fully transparently to the proposed
architecture and suggest a strategy for future work to do so.

The second question is relevant because its answer defines how to advertise the platform
to system programmers, who constitute the early technology adopters with the strongest
influence. For this question our answer considers separately the various peculiarities of the
machine interface.

The proposed ISA provides native hardware support for thread management and schedul-
ing and thus seems to conflict with the traditional role of operating software. Yet as we argue
this support does not change existing machine abstractions qualitatively, because concur-
rency management was already captured in operating software behind APIs with semantics
similar to those of the proposed hardware protocol. The machine interface provides config-
urable numbers of registers per hardware thread, which is a feature yet unheard of in other
general-purpose processors. Yet as we show this feature can be hidden completely behind
a C code generator, and can thus become invisible to operating system code or higher-level
programming languages. The proposed chip topology promotes a single address space shared
between processes, relying on capabilities [CLFL94] instead of address space virtualization
for isolation, which diverges from the process model of general-purpose operating systems
commonly in use today. Yet as we suggest the technology necessary to manage a single vir-
tual address space is already available and widely used (for shared libraries and application
“plug-ins”) and this feature thus does not pose any new conceptual difficulty.

We found that the first conceptual innovation that warrants further theoretical investiga-
tion is the surrender of shared memory as the universal synchronization device for software.
In traditional multi-core programming, implicit communication via coherent shared mem-
ory locations is routinely abused to provide locking, semaphores, barriers and all manners
of time synchronization between concurrent activities. In the proposed architecture, such
implicit communication is restricted and new basic programming constructs with fundamen-
tally different semantics must be used instead. We formalize a subset of these semantics,
then suggest how they can be used at a higher level in existing concurent programming
languages. To summarize, despite their strong conceptual divergence, we found that these

SUMMARY 3

new forms of synchronization are fully general and can theoretically be integrated in existing
software, although more work will be needed to actually realize this integration.

The second conceptual innovation we found is the finiteness of concurrency resources.
In most implementations of multi-threading on general-purpose platforms, threads and syn-
chronization devices (e.g. mutex locks) are logical concepts instantiated by software, with
the assumption that they can be virtualized at will using main memory as a backing store.
In the proposed architecture, threads and synchronization devices are finite resources which
cause execution deadlock when programs attempt to create more of them than are avail-
able in hardware. We argue that thread virtualization is not necessary with the advent of
declarative concurrency in programming languages. Unfortunately, we cannot determine
whether finiteness of synchronization devices is a net benefit towards further adoption of
the architectural concepts. To summarize, we found that this innovation will require further
analysis and possibly further refinements of the proposed architecture.

Beyond the scientific contribution towards the two questions outlined above, this book
also contains a narrative about the design and implementation of a new processor chip in
the midst of contemporary technology challenges. In particular, we highlight that a common
trend in processor architecture research is to “solve” conceptual issues by abandoning support
for some programming styles and software abstractions. We condemn this trend as being
detrimental to true general-purpose computing, and we discuss throughout our dissertation
how the requirement to preserve generality in processors impacts development, from the
architecture up to applications via operating software.

Samenvatting

Sinds het begin van de eenentwintigste eeuw hebben energie- en schaalbaarheidsproblemen
prestatieverbeteringen van individuele verwerkingseenheden zeer gehinderd [RML+01]. Om
de spreekwoordelĳke Gordiaanse knoop door te hakken heeft de industrie zich sedertdien
gericht op het laten toenemen van het aantal verwerkingseenheden per geïntegreerd circuit.
Dit heeft tot steeds grotere zgn. multi-processors geleid, waarmee aan (energie)efficiëntie ge-
wonnen kan worden, door middel van het schalen van klokfrequenties [RML+01, SA05]. In
het ontwerp van zulke multi-processors is het echter nog steeds gebruikelĳk algemene verwer-
kingseenheden, ontworpen voor alleenstaand gebruik, samen te voegen tot een systeem. Een
decennium na de herintrede van multi-processors is de computerarchitectuurgemeenschap
nog altĳd niet tot het inzicht gekomen dat multi-processors ontworpen door het samenstel-
len van traditionele verwerkingseenheden onvoldoende niet goed programmeerbar zijn voor
algemeen gebruik.

De CSA-leerstoel aan de Universiteit van Amsterdam legt zich toe op het ontwikkelen
van algemene machinemodellen en beheermodellen voor multiprogrammering, uitgaande van
een nieuwe verwerkingseenheid naar eigen ontwerp, die hardwareondersteuning biedt voor de
coördinatie van multiprogrammering over meerdere eenheden [PLY+12]. Een kernbegrip van
deze nieuwe architectuur is “hardwaremicrodeeltaken.” Dit begrip omvat asynchronie, d.i.
om kunnen gaan met operaties met zeer uiteenlopende verwerkingstĳden, fĳnmazige hardwa-
rematige deeltaken, een schaalonafhankelĳk programmeermodel—welk clusters-op-een-chip
van willekeurige omvang als enkelvoudige verwerkingsbronnen behandelt—en een in hoge
mate transparante schaalbaarheid van de prestaties van binaire code over variërende clus-
tergroottes. Buiten ingebouwde ondersteuning voor dataflowsynchronisatie en imperatieve
parallelle programmeering wĳkt deze verwerkingseenheid ook af van het RISC-paradigma op
vier gebieden. Het laat programma’s zelf bepalen hoeveel hardwarematige registers aan ieder
deelproces worden toegewezen. Onderbrekingssignalen worden als primaire asynchrone sig-
nalering vervangen door primitieven voor het afsplitsen en samenvoegen van deelprocessen.
De programmeur wordt een omvattende virtuele adresruimte aangeboden. Tevens wordt
het gebruik van het werkgeheugen als primair synchronisatiemiddel sterk ontmoedigd—ter
vervanging is een hiertoe toegespitst synchronisatieprotocol tussen verwerkingseenheden be-
schikbaar.

De introductie van een dergelĳke nieuwe machineinterface heeft behoorlĳk wat voeten in
de aarde. Gangbare besturingssoftware (besturingssystemen, vertalers, looptĳdomgevingen,
enz.) veronderstelt veelal, dat de hardware waarop ze wordt uitgevoerd uitwisselbaar is met
traditionele RISC eenheden met ieder een individuele MMUs, die allemaal toegang hebben
tot hetzelfde werkgeheugen waarmee synchronisatie kan worden gerealiseerd. Dientengevolge
kunnen bestaande besturingssystemen niet triviaal worden vertaald naar voornoemde nieuwe
architectuur. Het probleem is dat de machineinterface op conceptueel niveau afwĳkt van

5

6 SAMENVATTING

gangbare standaarden. Dit proefschrift behandelt de implicaties van deze koerswĳziging
voor besturingssoftware.

Wĳ richten ons in dit proefschrift hoofdzakelĳk op de volgende vragen:

1. Kunnen gangbare programmeertalen, zoals C, worden aangewend om dergelĳke ver-
werkingseenheden te programmeren?

2. Wat zĳn de kwalitatieve verschillen tussen de voorgestelde machineinterface enerzĳds
en dat van gangbare algemeen toepasbare processors anderzĳds en wat zĳn hiervan de
implicaties voor besturingssoftware?

De eerste vraag vindt haar relevantie in het gegeven dat de aanvaarding van nieuwe archi-
tecturen voor algemeen gebruik veelal sterk afhangt van de overdraagbaarheid van bestaande
programmeertalen. In het bĳzonder moet C vertaalbaar zĳn naar de nieuwe omgeving om
menige softwareomgeving te kunnen hergebruiken. In grote lĳnen kan deze vraag positief
worden beantwoord. Met behulp van een hiertoe ontwikkelde C-vertaler en gedeeltelijk stan-
daard C-bibliotheek kunnen we aantonen dat programma’s uitvoerbaar zĳn op verschillende
instanties van de voorgestelde architectuur, mits deze zĳn geschreven volgens de door de
C-ontwerpers aangegeven richtlĳnen voor platformafhankelĳkheid. Tevens breiden we C
uit met primitieven die de voorgestelde hardwarematige multiprogrammering aan kunnen
sturen. Het behoeft echter vermelding, dat menig concreet programma verdergaande aan-
names doet over het systeem waarop het wordt uitgevoerd. We behandelen de pĳnpunten
van de overdraagbaarheid van deze aannames en doen suggesties voor toekomstig onderzoek
te dezer zake.

De tweede vraag is relevant, aangezien het antwoord goeddeels bepalend is voor hoe de
nieuwe omgeving ten beste aangeboden kan worden aan systeemprogrammeurs. Deze ge-
meenschap is in hoge mate bepalend voor de verdere aanvaarding van een nieuwe architec-
tuur. De beantwoording van deze vraag gaat dieper in op de verschillende eigenaardigheden
van de machineinterface.

De voorgestelde ISA biedt hardwareondersteuning voor het beheer en de planning van
deelprocessen, wat ogenschĳnlĳk botst met de traditionele rol van besturingssoftware. Wĳ
beweren echter, dat het niet (kwalitatief) strĳdig is met bestaande machineabstracties, daar
het beheer van multi-programmering in besturingssoftware zich normaliter achter APIs ver-
schuilt met een vergelĳkbare semantiek. Het machinemodel biedt controle over de toewĳzing
van het aantal registers aan deelprocessen, wat tot op heden ongehoord is gebleken in alge-
mene verwerkingseenheden. Desalniettemin tonen wĳ aan dat deze eigenschap kan worden
verhult door toepassing van een C-codegenerator, waardoor noch besturingssysteem, noch
enige programmeertaal op een hoger abstractieniveau hier enige hinder van ondervindt. De
voorgestelde chiptopologie biedt processen allemaal dezelfde adresruimte. Hier vindt toe-
gangscontrole plaats op basis van geschiktheid [CLFL94], in plaats van virtualisatie van de
adresruimte. Deze aanpak wĳkt af van de procesmodellen van moderne, gangbare, algemene
besturingssystemen. Evenwel wĳzen we op de beschikbaarheid van gebruikelĳke technologie
voor het beheer van dergelĳke onverdeelde adresruimten (zoals, bĳvoorbeeld, voor gedeelde
bibliotheken en dynamische programmauitbreidingen) die op vergelĳkbare wĳze kunnen
worden toegepast, waardoor er geen conceptuele obstakels worden geboden.

De eerste conceptuele innovatie, waaruit verdere theoretische onderzoeksvragen voortko-
men, is het loslaten van het idee om het gedeelde werkgeheugen als synchronisatiemechaniek

SAMENVATTING 7

aan te wenden voor software. Traditionele multiprogrammeringsmethoden implementeren
doorgaans abusievelĳk met gedeelde variabelen wederzĳdse uitsluiting, semaforen, synchro-
nisatiebarrières en velerlei andere synchronisatiemechanismen tussen verschillende taken. De
voorgestelde architectuur stelt paal en perk aan dit soort communicatie en biedt ter vervan-
ging basis programmeerconcepten met fundamenteel andere semantiek. Een deel van deze
semantiek wordt in dit proefschrift geformaliseerd en de toepassing van deze concepten in
bestaande programmeertalen op hoger niveau wordt toegelicht. Samenvattend beweren wĳ
dat, ondanks conceptuele afwĳkingen, deze nieuwe synchronisatiemechanieken niets inboe-
ten aan algemeenheid en theoretisch geïntegreerd kunnen worden met bestaande software,
alhoewel voor dit laatste meer werk noodzakelĳk is.

De tweede conceptuele innovatie die we presenteren is de eindigheid van de ondersteu-
nende middelen voor multiprogrammering. Verreweg de meeste implementaties van alge-
mene, multiprogrammeerbare systemen zien deeltaken en synchronisatiemechanieken (b.v.
semaforen) als logische concepten die door software worden geïnstantieerd. Hierbĳ wordt
aangenomen dat ze onbeperkt kunnen worden gevirtualiseerd in het werkgeheugen. In de
voorgestelde architectuur zĳn deze middelen eindig, waardoor programma’s vastlopen wan-
neer ze zich meer dan in de hardware beschikbare middelen proberen toe te kennen. Wĳ
bepleiten echter, dat met de opmars van declaratieve multiprogrammering in programmeer-
talen deze virtualisatiebehoefte teniet doet. Helaas kunnen we niet inschatten of de eindig-
heid van synchronisatiemechanieken de aanvaarding van deze architectuur in de vakgemeen-
schap in de weg zal staan. Samenvattend kunnen we stellen dat deze innovatie verder zal
moeten worden onderzocht en dat de voorgestelde architectuur mogelĳk zal moeten worden
bĳgestuurd.

Buiten de wetenschappelĳke bĳdragen omtrent de bovengenoemde vragen omvat dit
proefschrift ook een relaas over het ontwerp en de implementatie van nieuwe verwerkings-
eenheden, te midden van hedendaagse technologische uitdagingen. We benadrukken in het
bĳzonder, dat recente onderzoeken naar architecturen van verwerkingseenheden meestal nei-
gen naar het loslaten van het bieden van ondersteuning voor gevestigde programmeerstĳlen
en softwareabstracties om conceptuele problemen “op te lossen.” Deze neiging wĳzen wĳ
af, als zĳnde schadelĳk voor algemeen computergebruik. Als rode draad door dit proef-
schrift loopt ons pleidooi voor het behoud van algemeenheid in verwerkingseenheden en de
consequenties hiervan voor ontwikkeling, van architectuur, via besturingssysteem, tot aan
toepassingen.

Dankwoord / Acknowledgements

In memoriam: Bertrand Russell, Dennis Ritchie & de kat

Zo’n onderneming van meerdere jaren, met zo weinig zekerheid op voorhand over de
uiteindelĳke resultaten, kan worden vergeleken met het opvoeden van een kind of met een
zelf-ontdekkingsreis. Zo heb ik het wel gedeeltelĳk ervaren; al was mĳn project een zoektocht
naar het onderliggende netwerk van kennissen, culturen, vaardigheden en methoden die aan
het bouwen van een computersysteem ten grondslag ligt. Op zoek naar een waarheid die
ik kon erkennen, heb ik dankbaar hulp aanvaard tĳdens mĳn oorlog tegen foute aannames,
onvolledige argumenten, drogredenen en andere vormen van onwetendheid.

Deze ervaring durf ik te vergelĳken met de cursus stĳldansen waarvan ik vele zondagen
gedurende mĳn onderzoek genoot. Mĳn meest betrouwbare danspartner is zonder twĳfel
Mike Lankamp geweest. Vier jaar lang hebben wĳ samen een genadeloze tango gedanst,
altĳd in strĳd met elkaar, waarbĳ de rollen van leider en volger regelmatig wisselden, maar
waarbĳ we altĳd samen toe werkten naar een esthetisch elegant resultaat. Our training was
faithfully guided by Chris Jesshope, who, beyond playing the background scientific tune to
which we danced, also subtly gave the measure, provided us with first steps to follow, and
trusted us to “make things happen” on our own. I will be forever grateful to both for this
lasting learning experience.

While exercising, I have also learned much from working with my fellow dancers and el-
ders: Irfan, Jian, Joe, Jony, Kostas, Michael and Qiang, you have been inspiring examples.
Vooral Thomas en Michiel hebben mĳ vaak geholpen met de knepen van het vak en per-
soonlĳke coaching; ik ben jullie hiervoor bĳzonder dankbaar. Wĳ deelden ook de vloer met
collega’s die een andere stĳl dansten. Al leek hun muziek op de onze, toch waren de pasjes
net iets anders; door naar hen te kĳken heb ik mĳn eigen kunnen verbeteren. Daarom wil
ik mĳn respect uitspreken voor Andy, Clemens, Fangyong, Mark, Merĳn, Peter, Roberta,
Roeland, Roy, Toktam en Wei alsmede hen bedanken. Similarly, I cherished our joint learn-
ing with partners from other schools: Bodo, Carl, Dan, Dimitris, Frank, George, Jara, Leoš,
Lukas, Martin, Raimund and Stephan, although you exercised a different swing on the same
music, the experience would have been largely incomplete without you.

Naturally, I would like to also thank respectfully the members of the evaluation commit-
tee, namely professor Jesshope, dr. Chamberlain, professor Scholz, dr. Grelck, professor de
Laat, professor Brorsson, and professor Klint, for their extensive comments and suggestions
toward improving the earlier versions of this book.

Ondanks mĳn liefde voor het dansen en mĳn interesse voor de muziek van Chris, had
ik het niet zo lang vol kunnen houden zonder de betrokkenheid en ondersteuning van een
paar waardevolle en bĳzondere personen. In de eerste plaats Rob Jelier, wie mĳ de weg
van een promotie wees. Van Rob kreeg ik een vernieuwd geloof in de wetenschap, en ook

9

10 ACKNOWLEDGEMENTS

in mĳzelf. Door zĳn voorbeeld te volgen, heb ik mĳn grondgedachten onderzocht, mĳn
dieptepunt van onzekerheid bereikt en ontdaan van alle externe motivaties. Toch ging
ik door, gedreven door pure nieuwsgierigheid. Naast Rob zĳn Mark Thompson en Simon
Polstra trouwe vrienden geworden die me voortdurend aan herinnerden dat ik niet slechts een
wetenschappelĳk instrument ben, en dat mĳn irrationele behoeften als mens ook aandacht
verdienen. Want ondersteuning op het menselĳke vlak had ik natuurlĳk ook nodig: die heb
ik niet alleen gekregen van Rob, Mark en Simon, maar ook van Marseda Duma, Sabien Jesse,
Roberta Piscitelli, Arnold Pols and Sylvain Viollon, die er altĳd voor me waren wanneer
motivatie ontbrak. En toen de tĳd kwam om na te deken over wat ik “erna” ging doen, heeft
Merĳn Verstraaten mĳ geholpen om een nieuwe betekenis aan mĳn rol te geven; dankzĳ hem
heb ik het afronden van het werk kunnen ervaren meer als een overgang dan een eindstreep.
Zonder jullie was het werk en daarmee ook dit boek nooit afgekomen.

Verder is mĳn werk ontzettend verrĳkt door een paar onwaarschĳnlĳke ontmoetingen.
Dankzĳ Marjolein op den Brouw heb ik begrepen dat wetenschappelĳke onderzoek een
zeer persoonlĳke onderneming is, onafhankelĳk van de voorkeuren van collega’s en promo-
tor(e)(s). Both Marjolein and Daniel Prokesch have taught me how inspiration and curiosity
come from within and must often be carefully balanced with other life priorities. Het begrip
dat onderzoek en onderwĳs niet veel meer dan een sociaal spel zĳn, met eigen politieke
regels, leerde ik ten eerste van Philip Hölzenspies; van hem, en ook van Jan Kuper, leerde ik
tegelĳkertĳd dat “het spel” leuk kan blĳven, zolang de deelnemers ervan weten te genieten.
Ik dank jullie beide voor de wĳze les om vaker te focussen op wat voor mĳ leuk is.

Last but not least, I wholeheartedly dedicate a kind word to Stephan Herhut, Andrei
Matei, Frank Penczek and Merĳn Verstraaten. Despite, or perhaps thanks to, our contrast-
ing personalities and quite distinct perspectives, you have provided a true meaning to the
words “community of peers.” With you I have simultaneously enjoyed the feeling of mutual
interest, admiration, pride and respect, the excitement of working and learning together,
and a healthy dosis of mutual evaluation and competition. I am looking forward to building
our friendships further.

kena
Amsterdam, July 2012

Preface

Zonder verhaal zijn feiten
sprakeloos.

Karel van der Toorn

When I joined the CSA group in September 2008, my supervisor Chris Jesshope tasked
me thus: “We made this novel chip called a Microgrid, and we want a C compiler to program
it. Do it.”

This is most of what this book is about. You are now holding a report on four years
worth of work towards compiling and running C programs on Microgrids, which are multi-
core, multithreaded processor chips. I am proud and content to report that a C compiler
now exists for this architecture. The following pages will hopefully convince you that the
corresponding software technology and example uses constitute an adequate answer to my
supervisor’s request.

Meanwhile, these four years have been intellectually instructive.
The first and most prominent discovery was that these Microgrid chips, that needed a

compiler, lacked a specification when my work started. As I learned quickly, there are two
meanings for the word “exist” in computer architecture. One definition, commonly used by
the layman, suggests a working physical artifact. This definition, however, is quite uncom-
mon in the research field: most chip architectures “exist” instead as models (blueprints) that
can be studied analytically or via software simulations. The Microgrid architecture obvi-
ously did not exist in this first sense, as it was not expected anyway. My surprise, instead,
was to realize that Microgrids only “existed” in the other sense in the mind of my colleagues.
Their existence was vernacular, shapeshifting, and lacked committed documents that I could
study and refer to. The second, most exciting discovery was that my colleagues had not
invented one chip design but instead a class of chip designs, which could be instantiated
over a range of design parameters. Therefore, to make a compiler, I first had to capture
my colleague’s minds on paper, then understand the architecture class so that a C compiler
could target all its possible instances.

On this quest to gather such a generic platform specification, a prerequisite to implement
a compiler, I made two further discoveries:

• previously written information about the new architecture was inconsistent, i.e. it
expressed conflicting ideas;

• the unwritten intellectual model manipulated by my peers, while relatively consistent,
was largely insufficient to implement a C compiler and accompanying software. For
example, it missed the concept of external input and output.

11

12 PREFACE

In other words, the task initially assigned to me required that I first document the
meta-architecture and then an instance thereof in sufficient detail. It also required that
I complement the model with additional features required by the new software. While
doing this, I had to accommodate the fact that some system features required to compile
the C language are not technically part of a compiler nor the hardware architecture, but
rather the “environment” provided by a software operating system. Therefore I had to also
contribute some additional technology in that direction. All this happened, although as you
would probably agree these steps are somewhat difficult to capture behind a simple “problem
statement” such as found in most doctoral theses.

When I wrote the first version of this book, its narrative was similar to the steps outlined
above and amounted to a straightforward technical report. When I initially submitted this
report, my supervisor rejected it. He argued that the scientific community would not be
interested in an engineering story; that they would rather like to understand which new
knowledge I had created on my way. So I sat and mulled over the report. What did I learn
during this work? What new knowledge did I create that was worth sharing?

At the foreground, surely there was some knowledge to share about the creation and
exploitation of a C compiler for a new architecture. So I left that in, to be found in chapters 6,
8 to 11 and 13. Yet I found that sharing only this knowledge was oddly unsatisfying,
because it depended on knowledge about said new architecture that was either unpublished
or inconsistent, and somewhat incomplete. Therefore, I decided to also share the detailed
knowledge I gathered from my colleagues about their Microgrid meta-model, complemented
by details about the different concrete instances that I used in my work. And so I added
that knowledge to the text, to be found in chapters 3 to 5. As a welcome side effect of
this excercise, I was also able to argue towards a renewed motivation (chapter 2) for the
architecture design, to complement the 15 years old argument [BJM96] that had so far served
unchanged as justification for the line of work.

When this was done, I mulled again: although I had formulated new knowledge and
made a scientific contribution to my field, I had not yet done justice to what I had found
most important and fundamental in those four years. For there were two other aspects,
which I dare call “knowledge” although my supervisor calls them “experience,” that I had
also isolated. The first is my understanding of the thrust of practitioners in my field:
what innovation really means in computer architecture and why it is so crucially important
to the future of computing. I share my views on this topic in chapters 1 and 16; this
explains why you should care about my story, even though you may not be interested in
Microgrids specifically. The second is my understanding of an obstacle shared between
computer architects working on multi-core chip designs, that is the necessary disruption of
unspoken knowledge.

Beyond the immediate need for more performance per watt, the role of a processor
chip designer is to provide components to other humans to use in larger systems; as such,
there is an iterated step of human-to-human communication required between component
architects, system architects and software practitioners. Due to the largely technical nature
of the devices considered, this communication is necessarily dense; to reduce verbosity, the
people involved rely on unspoken, tacit knowledge constituted by their cultural background
in computer science. Innovation is difficult because of this reliance on tacit knowledge. Any
novel component will break some unspoken assumptions and invalidate some commonly
accepted “truths.” Innovation thus requires formulating a new cultural background about

PREFACE 13

hardware platforms, a step which most audiences—especially in the software world—are
ill-trained to perform. In the case of Microgrids, my colleagues had already discovered
that the mere prospect of additional performance is not enticing enough when its cost is a
necessarily more complex mental model of the machine. What I have understood however,
is that software audiences are willing to pay the price of more complex models if they believe
that they gain in flexibility, i.e. future increases in productivity. There are two requirements
to support this belief. The first is that the chip designer does not gratuitously remove features
previously relied upon; the second is that the chip designer argues for the generality of any
new features, to convince software audiences they can be used in ways not yet foreseen. As
I found out, these two requirements were previously not very well addressed in the work
around Microgrids. To my colleagues’ defense, neither are they in other research projects in
computer architecture. Nevertheless I believe they are still essential to the eventual fruition
of innovative research in the field.

To advertise this experience, I thus decided to spend extra care to:

• detail the proposed architecture from the perspective of system software (chapters 3
and 4), highlight some of the most affected assumptions about the underlying machine
model (chapter 7), and suggest how features commonly found in other platforms are
also found in the proposed design (chapters 5 and 14);

• argue for generality throughout, starting with a renewed defense of general-purpose
computing (chapter 1) and placing emphasis on the potential use of the platform by
contemporary concurrent programming models (chapters 7, 9 and 12).

With this extra effort I want to communicate that the concepts around the advent of
Microgrids are not merely the bread and butter of a small research group; that this research
answers general requirements that deserve attention regardless of which specific architecture
they are considered from. This is why chapters 3, 4 and 9 are longer than strictly required
by a platform specification towards a C compiler, and why chapters 5, 7, 12 and 14 do not
fit the purely technical line of thought of the other chapters. As I explain in section 1.7,
this “meta-thesis” provides a second reading level, distinct from the technical contribution
at the first level.

To keep a long story short, if you wish to restrict your reading to the joys of compiling
C towards Microgrids, you can narrow down your focus to chapters 6, 8 to 11 and 13. The
rest is “simply” philosophy.

Chapter 1

Introduction

Ingenuity and imagination,
rather than accurate thought, are
the ordinary weapons of science.

G.H. Hardy [Har11].

Contents
1.1 Birdview epistemology . 16
1.2 Computer science . 18
1.3 Stem cells of computing . 20
1.4 Losing sight of generality . 24
1.5 Achilles’ heel of designers . 26
1.6 Case study: hardware microthreading . 28
1.7 Overview . 28

15

16 CHAPTER 1. INTRODUCTION

1.1 Epistemology: science is team work, so is innovation

The traditional purpose of the fundamental sciences is the acquisition of new knowledge
pertaining to observed phenomena, in an attempt to describe “what is.” In parallel to the
discovery of new knowledge through scientific inquiry, philosophers, or theoreticians, derive
ideas of “what could be.” Via formalisms, they construct structures of thought to validate
these ideas and derive iteratively new ideas from them.

We can focus for a moment on the human dynamics around these activities. On the
one hand, the intellectual pleasure that internally motivates the human scientists is mostly
to be found in the acquisition of knowledge and ideas. For natural scientists, the focus
is on accuracy relative to the observed phenomena, whereas for philosophers the focus is
on consistency. On the other hand, the external motivation for all fields of science, which
materially sustains their activities, is the need of humans for either discovery or material
benefits to their physical existence. From this position, the outcome of scientific inquiry and
philosophical thought, namely knowledge and ideas, is not directly what human audiences
are interested in. The “missing link” between scientific insight and its practical benefits is
innovation, an engineering process in two steps.

The first step of innovation is foundational engineering : the creative, nearly artistic
process where humans find a new way to assemble parts into a more complex artifact,
following the inspiration and foreshadowing of their past study of knowledge and ideas, and
guided by human-centered concerns. Foundational engineering, as an activity, consumes
refined matter from the physical world and produces new more complex things, usually
tools and machines, whose function and behavior are intricate, emergent composition of
their parts. The novelty factor is key: the outcome must have characteristics yet unseen to
qualify as foundational; merely reproducing the object would just qualify as manufacturing.
The characteristic human factor in this foundational step is creativity, which corresponds
to the serendipitously successful, mostly irrationally motivated selection of ideas, knowledge
and material components in a way that only reveals itself as useful, and thus can only be
justified, a posteriori.

The other step is applicative engineering, where humans assemble artifacts previously
engineerd into complex systems that satisfy the needs of fellow humans. In contrast to
foundational engineering, the characteristic human factor here is meticulousness in the real-
ization and scrupulousness in recognizing and following an audience’s expectations—if not
fabricating them on the spot.

The entire system of activities around science is driven by a demand for applications:
the need of mankind to improve its condition creates demand for man-made systems that
solve its problems, which in turn creates demand for new sorts of devices and artifacts to
construct these systems, which in turn creates demand for basic materials as input, on the
one hand, and intellectual diversity and background in the form of knowledge and ideas.
We illustrate this general view in fig. 1.1, and argue it is also valid for fundamental sciences
in side note 1.1. The role of education, in turn, is to act as a glue, ensuring that the output
of the various activities are duly and faithfully communicated to the interested parties.

Our first observation, which is perhaps the key motivation for the work presented in
this dissertation, is that different humans who partake in these activities have different
preferences. We do not expect any one person to participate in and be successful at all
steps to improving the condition of mankind. The corollary is that for all processes to
be successful, humans must acknowledge their separate interests and coordinate their work
towards the common goals.

1.1. BIRDVIEW EPISTEMOLOGY 17

applied engineering

primary
industry

"fundamental" sciences

what theoricians,

eg. logicians, mathematicians,

philosophers,

functional language designers

like to do

foundational engineering

"natural" sciences
for natural phenomena

"systems" science
for man-caused phenomena

what

experimental scientists

like to do

what users pay for

observation

inquiry &
modeling

abstract
derivation

experiences

scientific
knowledge

philosophical
ideas

tools,
machines

Creative
construction

phenomena

what inventors,

like to do

Refined
matter

Extraction

matter

"what is""what could be""useful stuff"

man-made artefacts,
whose behavior is emergent from
the behavior of the intentionally selected sub-parts

causal
systems

(existence
assumed)

"nature"
i.e. things

and causes
not made

by humans
on purpose

re
c
y
c
lin

g

fu
rt

h
e

r
re

fi
n

in
g

u
s
in

g
 m

a
c
h

in
e

s

a
s
 s

u
b

-p
a

rt
s
 o

f
o

th
e

r
m

a
c
h

in
e

s

fe
e

d
b

a
c
k
 o

f
m

a
n

-m
a

d
e

 s
y
s
te

m
s
 i
n

to
 t
h

e
 s

c
ie

n
ti
fi
c
 i
n

q
u

ir
y,

 t
o

 g
a

in
 h

ig
h

-l
e

v
e

l
u

n
d

e
rs

ta
n

d
in

gwhat short-term

industry money

pays for

what long-term

investment pays for

this usually

is not paid for

Applied
systems

Refining

what system engineers,

like to doCreative
application

should be paid for by long-term

investment, but is often not

u
s
in

g
 m

a
c
h

in
e

s

a
s
 c

o
n

s
tr

u
c
ti
o

n
 t
o

o
ls

human
concerns

inspiration

Figure 1.1: Activities related to science.

18 CHAPTER 1. INTRODUCTION

Side note 1.1: Fundamental sciences are also application-driven.
One may argue that the search for knowledge and understanding can be an end in itself, and deserve support
(e.g. via funding) regardless of its applicability. However, we argue that all scientific activities are motivated
by human needs for either discovery or comfort, and that it is human demand for their utilitarian value that
fuels continued inquiry.
The need for discovery concerns the expansion of mankind, both over time, space and intellectually. Dis-
covery has been historically more valued; it has fueled e.g. investigation into navigation and astronomy
to conquer space, history and medicine to conquer time, mathematics, logic and linguistics to conquer the
mind, theology, politicology and sociology to conquer the human group. Even astrophysics, quantum physics
and cosmology can be seen as discovery means towards conquering the universe. All other fields of science
exist to either improve the scientific process towards discovery, e.g. artificial intelligence or computational
sciences, or to optimize the use of the already-conquered area by humans, i.e. increase comfort.
In either case, the outcome of the scientific activity must be engineered into useful objects before it becomes
visible, even when the objects are just knowledge vehicles like books or lectures. Creating a book, for
example, involves a foundational step in expressing the text by the author, then assembly of the text into
a concrete print by the publisher. Even with “fundamental sciences” which claim to produce only abstract
knowledge, the value of the scientific activity can only be ascertained once the acquired knowledge is actually
communicated. We can thus say that it is the demand for knowledge vehicles, expected as physical artifacts,
that fuels the fundamental sciences.

SYSTEMS

ARCHITECTURESOFTWARE ENGINEERING

ELECTRONIC ENGINEERING COMPUTER ARCHITECTURE

metal
oxides

semi-
conductors

CMOS

Processors

Storage

metals
Links

Embedded
systems

NMOS

magnetic
substrates

Backplanes

refined matter

petro-chemicals

packaging

Functional
Units

Memories

Caches

electronics logic circuits components platforms

layers of composition and complexity: from parts to whole

Software
programs

Computing
platforms

Algorithms

Frameworks

Operating
software

systems

Networks

Computational
clusters

Personal
computers

Game
consoles

GaA/Si/SiGe/SiC
crystals

Figure 1.2: Composition of parts to entire computing systems.

1.2 Computer science, engineering, and its architecture sub-field

The term “computer science” broadly encompasses all activities around the design, manu-
facturing, application and analysis of computing systems. Computer systems engineering is
its subset of activities related to the design of the computing artifacts, i.e. the design of tools
that can be subsequently applied by the IT industry to mankind’s interests. We illustrate
the further sub-fields of computer engineering in fig. 1.2, namely: electrical engineering, soft-
ware engineering, computer architecture and systems architecture. As highlighted above,
the foundational part of computer systems engineering is inspired by, and based on knowl-
edge and ideas from natural sciences, such as biology and physics, and philosophy, such as
the theoretical work of George Boole, Alan Turing, Alonzo Church and Claude Shannon;
its outcome, i.e. computing systems, is then instantiated in computing applications, such as
home appliances, cars or medical equipment.

1.2. COMPUTER SCIENCE 19

In contrast to some fields of technology that can distribute the various activities to
separate groups of people, creating a divide of social roles between “scientists,” assumed to
be out of touch with the needs of daily life, and “engineers,” assumed to be out of touch with
fundamental theory, computer science is peculiar in that it requires all its practitioners to
be both skilled engineers and competent fundamental and experimental scientists. This is
a characteristic shared by all fields where the produced systems are complex assemblies of
parts themselves complex, deployed in complex situations; avionics, high-speed trains and
spatial equipment are other such fields. The reason is that for the composition of complex
pieces into a complex system to be tractable by human practitioners, first a model of the
parts’ behavior must be devised, to simplify the mental image manipulated in the creative
process in the next step. For example, when computer architects assemble caches and
processors into a multi-core microprocessor chip, they do not keep track of the individual
composition of the components in terms of p-type and n-type transistors; instead they
manipulate an idealized model of their behavior derived from previous implementations
by the experimental and analytic scientific inquiry. This abstraction process happens at
all levels of composition, from the grouping of silicon crystals into semiconductors to the
grouping of individual processing units into networks of computing clusters.

Historically, computer science was first an isolated field whose end applications were
restricted to defense and high-profile business administration. States (for defense) and
large companies (for business) could fund single organizations with large research facilities
to design their systems. When computers became useful to other applications with more
democratic audiences, the audiences could no longer directly fund single, large organizations.
The design of computing tools became distributed across distinct organizations carrying
the innovation process at different levels, and interacting together to combine systems. A
key enabling factor for this division of concerns was the invention of the general-purpose
computer, which allowed to separate the designers of hardware from the designers of software
into distinct communities.

1.2.1 The wonder and promise of general-purpose computers

In the middle of the 20th century, something exceptional in the history of mankind happened:
a universal tool was invented: the general-purpose computer. For the first time, any human
could potentially become an inventor and solve arbitrarily complex problems using pictures
of their thought processes projected as information patterns, i.e. programs, without the cost
of manufacturing new physical artifacts.

Although Charles Babbage can be acknowledged as the forefather of this artifact [Hal70],
the full scope of its generality was only understood by Turing at the start of the 20th century.
Indeed, our current general-purpose computers approximating Turing’s abstract machine are
one of only two ways that we currently know to make a computer that can compute most
of what a human may want to compute; the other way being queue machines, invented
later [FE81]. Furthermore, when the computer is connected to input/output interfaces, it
becomes interactive and can convert to and from phenomena of the physical world. Con-
versely, there is no known other way to assemble artifacts, other than those that can be
described by interactive Turing and queue machines, which can compute most of what hu-
mans can think of in a way that can influence, or can be influenced by, physical phenomena.

Obviously one does not need to invoke Alan Turing nor his thoughts when building a
device that accomplishes a specific task. Census count machines reading punched cards
were built and used successfully long before Turing was born [Hol89, Ran82]. The reason

20 CHAPTER 1. INTRODUCTION

why Turing’s contribution was remarkable is that it created theoretical confidence that a
general-purpose hardware platform could be successfully reused, after it is fabricated, to
solve problems not defined yet, and thus guaranteeing perpetual employment for software
creators.

This confidence stems from the formal thesis of Alonzo Church and Alan Turing on
computability—although it really comes from collective work with Post, Kleene and Gödel,
cf. [Dav65] for the full story—which establishes that all expressible formulas of arithmetic,
which by definition are all possible computations that humans can phrase intelligibly ever1,
can be computed by either an abstract Turing machine, Church’s λ-calculus or partial re-
cursive mathematical functions2. Moreover, when the machine is universal, the function it
computes can become a run-time input, i.e. software, while preserving the full generality of
the model. Because of this, a hardware platform that resembles a universal Turing machine
gives us confidence that it can be reused in the future by new software to solve problems
that have not been formulated yet. Since the only conceptual difference between a uni-
versal Turing machine and a concrete implementation is the finiteness of storage capacity
(vs. the infinite length of Turing’s tape), it is possible to approximate the abstract machine
increasingly accurately by simply adding more addresses to the storage, which seems to be
technically tractable for the foreseeable future.

This is the crux of what general-purpose computing is about: design and build a hardware
platform now, with reasonable confidence founded in logic that they can be used to solve
future problems in software.

Since then, other formalisms distinct from Turing machines and λ-calculus have been
developed and subsequently proven to be Turing complete, that is, at least as powerful
as Turing machines. The models that have received most attention are queue machines
(mentioned above), graph reduction machines able to reduce terms of λ-calculus [CGMN80,
PJCSH87], register-based variations on the Turing machine [vEB90], the π-calculus [Mil90],
and specific initial states of cellular automata [Cha02, Coo04]. Any of these models can
be made universal, i.e. programmable via software, by modeling a single-function machine
whose behavior is to read a program from an input device and then evaluate it. They
can furthermore be made interactive, i.e. connected to the physical world, by introducing
basic actions in their evaluation rules that effect external interactions. However, the only
computing artifacts built so far have been either Turing-like (register machines) or queue-
like (stack machines). All implementations of other formally as powerful models have only
existed as simulations of their semantics in programs running on hardware devices that can
be primarily described as register or stack machines. It is the Turing-completeness of these
specific two models that guarantees the future utility of the constructed artifacts.

1.3 General-purpose computers are the stem cells of computing

Sometime between 1992 and 1996, CALC was written. CALC was a graphing program:
the user would interactively enter on the keyboard the definition of a function and the
coordinates of a view window, and the program would plot the function, one point per

1NB: computations (computable functions) are a subset of all functions that can be phrased by hu-
mans. In particular there exist intelligibly phraseable non-computable functions, such as the busy beaver
function [Rad62].

2It further establishes that neither of these formalisms can compute anything more, that is, everything
we can compute using either can be described by an intelligible, valid formula of arithmetic; but this point
is irrelevant here. See [Hof99] for an accessible review of the theoretical and practical consequences.

1.3. STEM CELLS OF COMPUTING 21

column of the graphical display. As the story goes, CALC was written in BASIC over the
course of several months; a few months afterwards, the only extant copy of CALC was lost.

We resurrect the memory of CALC here to highlight the role of general-purpose com-
puting. Indeed, CALC would allow the user to enter any function definition that was valid
in BASIC. The syntax allowed integer and floating point arithmetic, grouping parentheses,
operator precedence, and uses of any built-in functions. It would then plot that function
interactively, i.e. without having to stop and re-run the program. In other words, the pro-
gram would understand a phrase expressed in a human language, that of mathematics, and
act upon it automatically. Yet, implementing that feature was trivial: CALC would simply
write the text of the user-supplied expression into a file, and load back the file into the
BASIC interpreter as an additional program fragment3.

To understand how this is relevant here, one needs to consider this anecdote as a para-
ble. What happened really is that an uneducated person was empowered to create by a
programming environment which was, through its naive simplicity and despite its flaws, in-
tendedly devoid of any specific purpose. A simple general feature, namely the ability to read
a user-defined program text from input and evaluate it, was key to overcoming the most
complex theoretical aspect of the task at hand. This parable illustrates that general-purpose
computing platforms are, like the stem cells of living organisms, key to the perpetuation of
computer engineering. They empower practitioners, both amateur and seasoned, to express
their creativity past the bounds suggested by current applications and uses, and solve new
problems in revolutionary ways.

There are two reasons why this generality is strongly desirable. The first reason is that
innovation and major advances in the field are a creative process by humans for humans,
as highlighted above. Creativity in humans usually occurs only in unbounded conceptual
frameworks and playgrounds. Therefore, computing science, as a field, will need flexible
and generic platforms for new developments and innovation. These platforms might be
isolated, conceptually or physically, from the products available to the general public, but
even when so pressured they will continue to exist as an essential and durable niche market
for computer science practitioners themselves.

The second reason is that all current trends converge towards the second era of separated
computing4, with visible and much-awaited benefits in terms of energy and cost management.

The visible tip of this iceberg, on the network side, is perhaps the ongoing rise of social
networks and online sharing platforms. But even in corporate environments, more and more
responsibility, in particular regarding the safeguarding and consolidation of data, is pushed
away from workstations to networked locations and accessed remotely. This setup principally
enables sharing the infrastructure costs (security, cooling, storage, failure management)
for the compute-intensive parts of networked applications. It reduces synchronization and
communication latencies in large applications by literally increasing locality, namely by
grouping the communication-intensive parts into a close geographical location. Through
careful over-subscription of shared computers, it also distributes the energy investment more
equally across heterogeneous applications. This setup is technically usable nowadays, as
opposed to the last part of the previous century when the client-server model somewhat
waned, essentially because of lower latencies in networks (cf. side note 1.2).

Meanwhile, and perhaps paradoxically, the devices at the human-computer interface be-
come increasingly powerful. Current low-end gaming devices already offer full virtual immer-

3Using the CHAIN MERGE statement.
4The words “separated computing” include both the asymmetric client-server model and distributed

applications where the overall behavior emerges from equal contributors.

22 CHAPTER 1. INTRODUCTION

sion through rich auto-stereoscopic images [JMW+03, Tab10, Lea10]. Reality-augmenting
glasses with on-demand, real-time streaming of contextual data are on the verge of becom-
ing mainstream [HBT07, Ber09]. All futuristic visions of human-centric computing include
pervasive and seamless human-computer interaction with incredible (by today’s standards)
amounts of signal processing.

To maintain control on power usage and locality, most of the signal processing will need to
be physically performed at the site of perception. What we currently call high-performance
computing equipment will find its way to the wearable miniature sensors of our future selves.
However, for no less obvious reasons, the processed data will flow between the individual
and the collective self, through distributed networked applications, because only there can
the sense-data receive the meaning necessary to its processing5.

Without speculating further on the nature of these dual computing systems made of
intelligent sensors and networked applications, it seems reasonable to assume they will be
based on hardware components responsible for transforming information. These future
systems may bear little resemblance to our current technology; yet, regardless of their exact
nature, one of their characteristics seems inevitable: adaptability.

Adaptability is the feature that will support technological evolution under the selective
pressure of market effects. Indeed, unless disaster strikes and totalitarian regimes become
the norm, free exchange of ideas and objects will force a dynamic, fast-paced adaptation of
technology to evolving human interests. Even assuming a stabilization of human demograph-
ics, the increasing access to technology and networks will cause the market for computing
systems to become even more segmented than today, with entire verticals6 rising and falling
faster than education systems. Combined with the fact that the knowledge required to com-
prehend and maintain systems will be increasingly dense, and thus decreasingly accessible,
there will not be enough manpower to design and implement entire new systems to cater
for new verticals. Since there is not yet any confidence that new designs can be reached
via autonomous artificial intelligence, we should assume instead that guided adaptation of
existing concepts to new uses and new requirements by humans will be the norm.

Evolutionary theory suggests that adaptation works best if the system keeps a healthy
reserve of repurposable stem cells. It seems conceptually difficult to re-purpose the pro-
grammable controller for a washing machine into a car navigation system; whereas the
computer scientist today clearly sees a specialization path from a general-purpose computer
to both devices. Actually, specialization of computing elements, like cell differentiation in
organisms, is an unavoidable phenomenon required to support the increased complexity of
their applications. However efficient specialization is a repeating phenomenon, with each
generation stemming from non-specialized components instead of previous generations of
specialized systems. This applies to both hardware design and software design.

In the light of this perspective, one could possibly accept the doom of commodity, one-
size-fits-all “all-purpose” computer designs. Individual devices that would truly satisfy any
computing need in a practical or economical way have never really existed. Besides, the im-
mediate human-computer interface is best served by specialized devices. However, general-
purpose specializable computing systems must continue to exist, at least for those humans
who, through their creativity and inventiveness, will be responsible for future innovation.

5 This vision of networked computing was inspired by professor Zhiwei Xu, from the Chinese Academy
of Science.

6vertical : an entire computing market addressing a specific segment, from hardware manufacturing to
online services including system and software development. Two archetypal verticals are mobile phones and
car navigation systems.

1.3. STEM CELLS OF COMPUTING 23

Side note 1.2: The second rise of separated computing.
Historians of our field have highlighted that client-server computing has been prevalent before, but then
disappeared. This warrants an aside.
The key observation is that the client-server model “makes sense” economically and practically for the reasons
mentioned in section 1.3. These merits have never disappeared; they have been merely shadowed by the
ever-increasing computing speed of autonomous, commodity general-purpose computers (“desktops”) in the
last period of the 20th century relative to the network latencies.
Indeed, the centralized structure of the first networks, combined with the characteristics of network links
at that time, was a serious obstacle to their increased prevalence. To match the increasing expectations
of computer users, applications had to become more interactive and more responsive. More than the load
on computational performance on servers, the subjectively unacceptable response time and jitter of com-
munication links was the first motivation towards increasingly powerful terminals and locally interactive
applications. Previous work on human-computer interaction [Mil68, CMN83, CRM91] suggests that 100ms
is the maximum acceptable delay between a keystroke and the screen response, and [Shn84] suggests that
higher variability of response times incur lowered user performance. These findings have served as references
for user interface design ever since [Nie94, Chap. 5]. In contrast, the high latency and contention of terminal
channels to shared computing facilities in the period 1970-1990 was failing users on both counts.
The market for personal computing grew initially faster than communication networks, further strengthening
the trend toward autonomous computation devices, incarnated in personal computers. The low-latency, high
throughput, globally available distributed network that was needed to support the growth of a computing
market based on the client-server model only appeared much later—and unfortunately long after audiences
had gotten used to the merits and flaws of their autonomous, power-hungry, inefficient commodity general-
purpose computers. In contrast, the reason why the Internet became what it is today was a combination of
economic and social factors outside of the realm of computer science: the global need for more connectivity,
more trade, information exchange, etc. The epic conflation of telephone and data networks is fueling, to this
day, a fierce competition that produces as a side effect an increasingly large, robust and wider network.
Now that the global network is available, we should find it remarkable that all online actors, from individual
news broadcasters to scientific computing centers, know acutely the huge potential of such a strong connec-
tivity. It is just natural that we use this opportunity to again tap into the merits of separated computing,
which we had left aside for a few decades.

Side note 1.3: Embedded/specialized vs. general-purpose computers.
A defense of general-purpose computing would be incomplete without a reference to embedded systems.
The increasing pervasiveness of embedded systems is often cited as a tendency towards the disappearance
of general-purpose computing. However, this is likely a fallacy.
The characteristic of embedded systems that is relevant here is their invisibility: while they are necessary to
technological evolution, and their function is expected by the users of the devices where they are embedded,
these systems are not shown. In fact, embedded systems do not have an existence as computers in the eye of
their users, which therefore do not expect from them “abstract” features such as re-programmability and re-
configurability. The large and growing embedded market is one of specialized function, reliability, sometime
performance, and foremost dedication to well-defined tasks that allow economies of scale in manufacturing.
Embedded devices are essentially engineered for specific purposes at the expense of programmability and
configurability, which typically matter less to their audience.
When considering their manufacturing and sales figures, and the massive body of knowledge developed to
support their field, embedded systems dominate the field of computer science by sheer numeric superiority.
It is this pervasiveness that seems to shadow general-purpose computing and suggests its doom from the
perspective of practitioners in the field.
However using the growth of embedded systems as an argument against general-purpose computers amounts
to ignoring the “elephant in the room”: the creation of embedded devices would not be possible without
development computers, those very computers used by embedded system engineers: developers, testers,
quality controllers, etc. By the initial argument above, most of the advances in embedded system design
would not be possible without stem computers that let the designer imagine radically new devices without
preconceptions: either their own development machines, or non-specialized, freely composable template
components with no predetermined function.

24 CHAPTER 1. INTRODUCTION

Side note 1.4: Example functions that can be made primitive recursive.
Multiplying two matrices; filtering noise out of audio; compiling assembly code to machine code; computing
a minimum flow in an acyclic graph; recognizing object boundaries in an image; plotting a graph for a fixed
arithmetic function; printing a JPEG image; looking up a value in a dictionary; simulating another computer
which can compute only primitive recursive functions.

Side note 1.5: Example functions that are not primitive recursive.

Sorting; recognizing a tune from an audio sample; compiling a C++ program to machine code; computing
a shortest path in a cyclic graph; recognizing objects in an image; plotting a graph for an arithmetic
function entered interactively; typesetting a TEX document; running an SQL query on a relational database;
simulating another computer which can compute partial recursive functions.

1.4 Losing sight of generality: the risk of throwing out the baby
with the bathwater

Half a century after having found a true wonder, we run the risk of losing it: under the
pressure of capitalism, optimization and efficiency, the generality of computers has been
endangered since the turn of the 21st century.

The prevailing thought in the personal computing industry at the time of this writing
is that there are no uses of computing systems by the general public that are freely pro-
grammable by the user7. A common argument in favor of such an iWorld, where form is
actualized by branded functions, and where each fixed-function iApplication is blessed in-
dividually by arbitrary and opaque corporate review processes—or euthanized before birth
if its market value is not ascertained upon inception—is the growing enthusiasm for iThis
and iThat devices initiated with the new millennium.

The forces driving this evolution are further discussed in [Zit08]: the free market and
deregulation of large companies has created incentives to innovate behind closed doors and
create instead devices that capture their users into consumption cycles. Capital gains dis-
courage reuse and extension of existing products in favor of the forced acquisition of new
products for every new application. The associated risk is an opportunity loss: individuals
with the skills to innovate in software become increasingly limited in their ability to carry
out innovation until they are trained privately by corporate technology providers.

Even in technical circles, where generality is traditionally respected, the need for in-
creased computing power and efficiency creates pressure to reduce generality. This effect
has existed throughout the history of computing; for example, the author of [Day11] reminds
us how Dijkstra’s suggestion to introduce recursion in programming languages was met with
resistance from audiences focused on the short-term performance gains from non-recursive
language semantics. Yet, for reasons we will revisit below in section 1.4.1, the computer en-
gineering field has come lately under tremendous pressure to answer requests for additional
performance, and the temptation is great to specialize devices to match this demand.

We can recognize this situation in the recent enthusiasm for “accelerator” boards, which
re-purpose graphics-oriented co-processors (usually texture shaders) towards other types
of computations. The marketing message is that these processors are “general-purpose”:
they seem to address application needs of both scientific and consumer audiences alike.
However this message is misleading: full generality requires interaction, arbitrarily large

7Including, but not limited to, the ability to share freely the outcome of a programming activity with
peers.

1.4. LOSING SIGHT OF GENERALITY 25

random-access storage and either arbitrary numbers of conditional branches or arbitrarily
deep data-dependent recursions, per individual thread, which these devices usually do not
support8. Instead, they are just sufficient to compute any primitive recursive function of
arithmetic9. Since most of what humans need to compute can be described by primitive
recursive functions (cf. side notes 1.4 and 1.5), this type of computer seems already quite
useful; however, by the argument of section 1.2.1, these devices fundamentally limit our
ability to solve future problems.

1.4.1 The current pressure to innovate

Processors and memories are two unavoidable sub-parts of any computing system, as they are
at the heart of the ability of the system to compute (cf. section 1.2.1). Until the turn of the
21st century, system engineers using these components as building blocks could assume ever-
increasing performance gains, by just substituting any of these components by the next gen-
eration of the same. Then they ran into two obstacles. One was the memory wall [WM95],
i.e. the increasing divergence between the access time to memory and the execution time
of single instructions. The second is the sequential performance wall [AHKB00, RML+01],
i.e. the increasing divergence in single processors between performance gains by architec-
tural optimizations and the power-area cost of these optimizations. A third potential wall
is now visible on the horizon: the end of Moore’s law [Kis02, ZCHB03, TP06], or more
precisely a potential limit on the maximum number of silicon CMOS-based transistors per
unit of area on chip. These obstacles are the stretch marks of a speculation bubble ready
to burst. Unless solutions are devised within a decade, the economy of the IT industry of
applications, currently based on an expectation of future cheap performance increases in
computing systems, may need a serious, globally disruptive reform.

1.4.2 Where and how to innovate

The discussion so far opens space for innovation in different directions. A first possible
direction is to invent a new implementable universal computing model that offers at least as
much expressivity as Turing’s model, with more computing power and scaling opportunities
than what all current devices offer. Quantum or biological computers may be candidates,
although their realizability at the scale of current human needs, and their universality, are
not yet ascertained. Another direction is to find new smaller and faster building blocks to
make universal and interactive Turing-complete computers, for example using light-based
logic instead of electronics [SLJ+04], however these new technologies may not be available
before the limits of silicon scaling are reached. In the medium term (a decade), innovation
seems tractable at two levels. Software ecosystems could embark on an intensive quest for
simplification towards fighting Wirth’s law10 and gaining efficiency. However, the odds that
this will happen are at best unclear [Ken08, MSS10, XMA+10]. Or, computer architects
could find new ways to arrange CMOS logic into different, more efficient combinations of
processors and memories, possibly exploiting parallelism and scalable throughput. This
direction, initially suggested in [RML+01], seems especially tractable given the growing
availability of concurrency in software, a topic we revisit in chapter 2.

8We support this argument for an example state-of-the-art accelerator chip in chapter 12.
9To simplify, a primitive recursive function is a computation where the number of steps in any repetition

is known before the repetition starts; for details see [Pét34].
10“Software is getting slower more rapidly than hardware becomes faster.” [Wir95]

26 CHAPTER 1. INTRODUCTION

1.4.3 Politics and openness in innovation

Assuming computer architects will be responsible for principal innovations in computer en-
gineering in the next decade, and assuming generality in the produced systems is a desirable
feature for software audiences, there exist two principal questions:

• the inner question, from the individual architect’s perspective, is one of substance:
what will be the good ideas and new component assemblies? What will they look like?

• the outer question, from the perspective of the computing science community, is one of
logistics: how to ensure that any innovation, if it occurs, will be brought to realization
and support the continued growth of computing ecosystems?

Answering the inner question is fully under the responsibility of the architects, and
bounded only by their creativity. The outer question, however, is not under their control.
As we identified in section 1.4, market effects combine the overall need for new technology
with an incentive for corporations to keep their solutions specialized and opaque. Levers
to market dominance and corporate power struggles, in particular increasing uses of the
vendor lock in and planned obsolescence effects, create the risk that any coming innovation
in computer architecture will be realized behind closed doors, and will only be featured in
products lacking the desired generality.

The computer architecture community is responsible for safeguarding against this appro-
priation of upcoming innovations by corporate interests. The methodology to guarantee the
generality of solutions and their accessibility to large audiences is obviously transparency,
that is documenting publicly not only the outcome of the innovative processes but also which
creative steps were undertaken and their background knowledge and experiences. This is
necessary so that other parties, in particular younger generations of computer engineers,
can steadily join the innovation enterprise via imitation, reproduction and extension of past
discoveries.

1.5 The Achilles’ heel of designers: HIMCYFIO

On the road to innovation, computer architects face a pitfall which we call “Here Is My
Component, You Figure It Out (HIMCYFIO).”

The circumstance for HIMCYFIO concerns visionary computer architects who address
a known or future technology obstacle while avoiding complexity, i.e. who deviate from
established routes while preserving conceptual simplicity. The pitfall occurs when the in-
ventor proposes a new component design, in isolation, with the unfounded confidence that
its purpose and utility are both self-explanatory and desirable, and thus that it will be
“necessarily” successful upon completion. The assumption is that industry will “eventually
catch up” and integrate the component in larger computer systems, because the need seems
self-explanatory (cf. section 1.4.1) and the integration self-evident (seems simple to the de-
signer himself). This assumption is fallacious because peer inventors and potential users,
especially the software community, will both find the invention foreign, i.e. difficult to un-
derstand simply because it differs from the common ground, and non-trivially applicable,
because its proper use in larger computer systems is not yet determined.

To summarize, HIMCYFIO occurs because hardware architects mistakenly consider that
the novelty and simplicity of a new approach is sufficient to relieve them of the burden of
holding their audience’s hand in appreciating their work. In even shorter words, HIMCYFIO
occurs when architects answer their inner question while avoiding or answering incorrectly

1.5. ACHILLES’ HEEL OF DESIGNERS 27

the outer question (cf. section 1.4.3). When HIMCYFIO occurs, potentially interesting
component designs run the risk of never being integrated in a working computer. Large
research investments, including potential great ideas, may be lost; personal ambitions may
be crushed. We could find several example victims of HIMCYFIO:

• the Manchester dataflow machine [GWG80] proposed a relatively simple processor
design using dataflow principles, with the early vision that the latency of all exter-
nal communication, even fine-grained memory accesses, should be tolerated by se-
lecting independent instructions in hardware. However its exclusive dedication to
SISAL [MSA+83] forced its designers into a niche community where they stayed until
the termination of the project in 1995;

• the designers of the Monsoon architecture [PC90] had a similar combination of fresh
applications of dataflow scheduling and practical implementation plans for a processor.
However they restricted the use of their design to the Id language [ADNP88], while
suggesting that I/O and program control would be handled on a separate type of
processor running the (by-then-already-standard) Unix operating system. This forced
users to work with two programming models, and the resulting conceptual conceptual
complexity proved fatal to the project;

• a more recent and high-profile example can be found with Transmeta’s Crusoe archi-
tecture [Kla00]. On the one hand, the combination of a relatively simple Very Large
Instruction Word (VLIW) design with Code Morphing [DGB+03] was a revolutionary
way to expose a high-ILP, low-power pipeline to an audience locked into Intel cores.
On the other hand, the final product’s packaging was ill-designed: despite the presence
of an on-die DDR memory controller (for the instruction cache), external memory was
supported only via a slower SDRAM interface; and I/O was restricted to the legacy
“southbridge” system interface. These integration choices rendered the overall chip un-
competitive for data-intensive or graphics-intensive applications. While Transmeta’s
goal was to guarantee thermal budget envelopes, and the chip was retrospectively
competitive in this regard, this priority was not appropriately communicated to the
company’s audience.

These examples illustrate that to avoid this pitfall, architects should design new compo-
nents in the context of entire systems and their applications:

• when designing for new applications, they must work together with system and com-
piler programmers so that this first level community obtains an early understanding
of the architecture’s benefits;

• when designing for existing applications, they must acknowledge the assumptions made
in the existing programs and provide designs that integrate existing usages transpar-
ently; in particular, they must acknowledge common expectations about performance
without requiring radically new machine models.

The reason why recognizing and averting HIMCYFIO systematically is important is
that this is the only way to make generative architecture research an attractive field for
newcomers.

28 CHAPTER 1. INTRODUCTION

1.6 Case study: hardware microthreading

In an effort to innovate in computer architecture while preserving generality, as identified in
section 1.4, a research project coordinated from the University of Amsterdam is exploring
new ways to assemble microprocessors from logic. After observing that a large amount of un-
tapped concurrency is already present in software applications, the researchers in this group
propose to design processor chips that cater primarily to throughput scalability and execu-
tion efficiency, possibly at the expense of the performance of single instruction streams. The
proposed chip design combines short Reduced Instruction Set Computer (RISC) pipelines
with dynamic dataflow scheduling [NA89] and Hardware Multi-Threading (HMT) on indi-
vidual cores for latency tolerance and energy efficiency, and implement flexible hardware
support for thread and task management across different cores for throughput scalability.
We shall call this approach “hardware microthreading,” as opposed to simply “microthread-
ing” used in prior work from this research team, to distinguish it from the microthreads
managed in software in IBM’s Cell Broadband Engine [AAR08].

The abstract definition of hardware microthreading, together with guidelines on how to
design architectures around it, establishes principles of architecture design. These should
in turn be applicable to a diversity of application domains, from embedded systems to
high-performance supercomputers. However, before this happens the principles must be
illustrated at a small scale, into an artifact suitable to convince external observers, as high-
lighted in section 1.5.

To achieve this, the research group also attempts to define an entire general-purpose
chip architecture which embodies hardware microthreading with simple RISC cores and a
custom Network-on-Chip (NoC). In the preliminary phase, given the complexity of modern
silicon, this research was carried out via detailed simulations of individual components based
on their potential behavior on silicon, using artificial microbenchmarks. The initial results
were encouraging [BHJ06a, BHJ06b, BGJL08], and motivated the enterprise of a larger
project to carry out a more extensive realization:

• at the hardware level, design and implement a prototype single-core implementation
of the new architecture on an Field-Programmable Gate Array (FPGA); and simul-
taneously implement a software emulation of a full multi-core system using the new
processor design;

• at the software level, design and implement new operating systems, language tool
chains, and a representative set of benchmarks to evaluate the new hardware archi-
tecture, both on single core (FPGA prototype) and multi-core systems (emulation
environment).

This is the project where this book originated.

1.7 Overview

Our dissertation reflects on the interaction between foundational engineering activities around
hardware microthreading. It provides two reading levels.

At the first level, a technical report provides possible concrete answers to the outer ques-
tion around hardware microthreading. This report recollects the substance of the invention
in part I, then describes in part II how we extended the base architecture concepts into a

1.7. OVERVIEW 29

Symbol Description
◯ Exposition of previous answers to the inner question.
◻ Argument or contribution towards answering the outer question.
∎ Contribution towards answering the inner question, required while an-

swering the outer question.
▷ Acknowledged opportunity for further work on the outer question.
▶ Required further work on the inner question, identified while answering

the outer question.

Table 1.1: Symbols used to mark technical contributions throughout our dissertation.

general-purpose platform, and finally summarizes key evaluation activities around this plat-
form in part III. During this research, we also made related minor contributions to the sub-
stance of the invention. We classify our findings about the inner and outer questions around
hardware microthreading throughout the text using the symbols from table 1.1; a summary
is given in table 1.2. This technical contribution touches multiple system-wide issues, from
code generation to applications through the operating system stack; as such, it connects
architecture and system research [MBRS11]. The scope of the work at this reading level is
illustrated as the light gray area in fig. 1.3: this dissertation complements [Lan07, Lan1x],
which mostly describe the answers to the inner question (dark gray in the figure); it also
does not consider how the innovation will eventually be used in specific applications.

The main contributions are to be found at the second reading level. Our choice of
hardware microthreading is really a case study for the dialogue between the innovator and
their community of peers. At this level, we make two contributions. The first contribution
is a methodology that a chip processor designer can use to avoid the HIMCYFIO pitfall:

1. exposing publicly the design concepts and their trade-offs (part I),
2. recognizing and choosing audiences, and using their current expectations as a starting

point to define a context (chapter 5);
3. explaining the innovation to the chosen audience(s) in the way that the audience was

previously used to (chapters 6 and 7);
4. exposing and detailing how the innovation differs from past experience of the audience,

within the context determined in step 2 (chapters 8 to 11);
5. providing a test and experimentation environment to third parties, and letting the cho-

sen audience observe that third parties can use the innovation on their own (part III).

This methodology is presented throughout the dissertation, and applied to the topic of
hardware microthreading as an example.

The second contribution is a discussion, spread over the entire dissertation, about what
“generality” means and what features are required in computing components so that they
can be advertised as general. As we argued previously in section 1.3, the future of auto-
mated computing will require humans to specialize “stem cell” computers towards specific
applications. Within the context of computer architecture, the properties required from
these “stem cells” have been outlined abstractly in section 1.2.1; the discussion in part II
shows how to find or construct these properties in concrete implementations.

30 CHAPTER 1. INTRODUCTION

2000 2020

Visibility
 innovation phases

Time

Exploration
Definition of hardware
microthreading

Realization - first steps
Feasibility and applicability
(Apple-CORE)

Exploitation
Study, modeling, integration

NOW

(a) Innovation process perspective

2000 2020

System
abstraction stack

Time

Definition of HW interface

NOW

First concepts of
SW interface

Design of hardware
components

Hardware
prototyping & realization

SW interface -
redesign

Programmability, code generation
and operating systems

Applications &
higher-level prog. languages

(b) System stack perspective

Figure 1.3: Scope of the answers to the outer question.

The dark gray area highlights the scope of [Lan07, Lan1x].
The light gray area highlights the scope of this dissertation.

Chapter Contributions
2. Trade-offs in microprocessor design ◻◻◻◻◻
3. Architecture overview ◯◯◯◯◯◯◯◯◯◯◯◯
4. Machine model & hardware interface ◯◯◯◯◯◯◯◯◯◯◯◻◯◯◯◯◯◯◯◯◯◯◯◯◯◯◻◯
5. System perspective ◻◻
6. Programming environment ◯◻◻◻◻▷▷◻◻◻▷◻▷▷
7. Disentangling memory and synchronization ◻◻◻◻◻▷▷
8. Visible synchronizer windows ◻◻◻◻◻◻◻▷
9. Thread-local storage ◻◻▶◻◻▷
10. Concurrency virtualization ◻∎◻▷▷▷▷
11. Placement and platform partitioning ◯∎◻◻◻▷
12. Issues of generality ◻◯◻◻◻◻◻▷
13. Core evaluation ◻▷∎▷▷▷◻◻▶
14. System-level issues ▶◻▶▷◻▷▷▶▷

Table 1.2: Overview of technical contributions per chapter.

Part I

Characterization of hardware
microthreading

—Exploring the designer’s mind

Chapter 2

Trade-offs in microprocessor design

Abstract

Innovation by hardware architects takes place in a cultural context, the zeitgeist
of the current technical age. To help audiences recognize the innovation as such, this
background knowledge must be identified and communicated explicitly in a way that
highlights current shortcomings. In this chapter, we propose such a perspective to mo-
tivate the innovation described in chapter 3 onward. By analyzing current trends and
general trade-offs in CMP design, we identify the innovation space for microproces-
sors with more numerous, smaller general-purpose cores featuring HMT and hardware-
supported concurrency management.

Contents
2.1 Introduction . 34
2.2 Size matters . 35
2.3 Sequential performance . 36
2.4 Limits of specialization . 37
2.5 Dynamic heterogeneity . 38
2.6 Fine-grained multi-threading . 39
2.7 Hardware concurrency management . 40
Summary . 41

33

34 CHAPTER 2. TRADE-OFFS IN MICROPROCESSOR DESIGN

2.1 Introduction

A condensed summary of the pre-2000 history of general-purpose microprocessor design is
best quoted from [RML+01]:

In the past several decades, the world of computers and especially that of mi-
croprocessors has witnessed phenomenal advances. Computers have exhibited
ever-increasing performance and decreasing costs, making them more affordable
and, in turn, accelerating additional software and hardware development that fu-
eled this process even more. The technology that enabled this exponential growth
is a combination of advancements in process technology, micro-architecture, ar-
chitecture, and design and development tools. While the pace of this progress has
been quite impressive over the last two decades, it has become harder and harder
to keep up this pace. New process technology requires more expensive megafabs
and new performance levels require larger die, higher power consumption, and
enormous design and validation effort. Furthermore, as CMOS technology con-
tinues to advance, microprocessor design is exposed to a new set of challenges.
In the near future, micro-architecture has to consider and explicitly manage the
limits of semiconductor technology, such as wire delays, power dissipation, and
soft errors.

The authors of this paper detail the obstacles faced by architects on the way to faster
and more efficient processors. A summary can be found in [BHJ06a]: fundamental energy
and logic costs hinder further performance improvements for single instruction streams. To
“cut the Gordian knot,” in the words of [RML+01], the industry has since (post-2000) shifted
towards multiplying the number of processors on chip, creating increasingly larger CMPs
by processor counts, now called cores. The underlying motivation is to exploit higher-level
parallelism in applications and distribute workloads across multiple processors to increase
the overall throughput of computations1.

This shift to multi-core chips has caused a commotion in those software communities that
had gotten used to transparent frequency increases and implicit Instruction-Level Parallelism
(ILP) without ever questioning the basic machine model targeted by programming languages
and complexity theory. “The free lunch is over” [Sut05], and software ecosystems now have
to acknowledge and understand explicit on-chip parallelism and energy constraints to fully
utilize current and future hardware.

This may seem disruptive when most textbooks still describe computers as a machine
where the processor fetches instructions one after another following the control flow of one
program. Yet this commotion is essentially specific to those traditional audiences of general-
purpose processors. In most application niches, application-specific knowledge about avail-
able parallelism has long mandated dedicated support from the hardware and software
towards increased performance: scientific and high-performance computing have long ex-
ploited dedicated Single Instruction, Multiple Data (SIMD), Multiple Instruction, Multiple
Data (MIMD) and Single Program, Multiple Data (SPMD) units, embedded applications
routinely specialize components to program features to reduce logic feature size and power
requirements, and server applications in datacenters have been optimized towards servicing

1While parallelism can also be used to reduce the latency of individual programs, Amdahl’s law gets in
the way and Gustafson’s law [Gus88] suggests that the problem sizes of the parallel sections instead expand
to the parallelism available at constant latency.

2.2. SIZE MATTERS 35

more logic
per core

less logic
per core

larger number
of smaller cores

smaller number
of larger cores

Higher sequential performance per core Higher throughput overall
Less instructions per watt, less efficiency More instructions per watt, more efficiency

Figure 2.1: Choice between smaller or larger cores at equal logic and energy budget.

independent network streams, exploiting dedicated I/O channels and HMT for throughput
scalability.

Moreover, we would like to propose that while general-purpose programmers have been
struggling to identify, extract and/or expose concurrency in programs during the last decade,
a large amount of untapped higher-level parallelism has appeared in applications, ready
to be exploited. This is a consequence of the increasing number of features, or services
integrated into user-facing applications in the age of the Internet and ever-increasing support
of computers for human activities. For example, while a user’s focus may be geared towards
the decoding of a film, another activity in the system may be dedicated to downloading the
next stream, while yet another may be monitoring the user’s blood nutrient levels to predict
when to order food online, while yet another may be responsible for backing up the day’s
collection of photographs on an online social platform, etc.

Even programs that are fundamentally sequential are now used in applications with high-
level parallelism at scales that were unexpected. For example, the compilation of program
source code to machine code is inherently mostly sequential as each pass is dependent on
the previous pass’ output. However, meanwhile entire applications have become increasingly
large in terms of their number of program source files, so even though one individual compi-
lation cannot be accelerated via parallelism it becomes possible to massively parallelize an
entire application build.

In other words, while Amdahl’s law2 stays valid for individual programs, we should
recognize that Amdahl did not predict that single users would nowadays be routinely running
so many loosely coupled programs simultaneously. Hence the necessary question: assuming
that multi-scale concurrency in software has become the norm, what properties should we
expect to find in general-purpose processor chips?

We explore this question in the rest of this chapter.

2.2 Size matters

Once the architect considers a CMP design, an opportunity exists to choose how much logic
to invest per core vs. how much logic to invest towards a larger number of cores.

Once concurrency is available in software, it becomes advantageous to scale back the
number of transistors per core and increase the number of cores. There are two reasons
for this. The first reason is that the logic and energy costs invested in individual cores
towards improving sequential performance, namely larger branch predictors, larger issue

2Amdahl explained in [Amd67] that that the performance of one program will stay fundamentally limited
by its longest chain of dependent computations, i.e. its critical path, regardless of how much platform
parallelism is available.

36 CHAPTER 2. TRADE-OFFS IN MICROPROCESSOR DESIGN

most logic invested towards
sequential performance, throughput as an add-on

most logic invested
towards overall throughput

Machine model centered
on single-threaded execution

some sequential processors
as a service of the system = "sequential accelerators"

Machine model centered
on parallel execution

sweet spot probably around heresmall processors towards throughput
as a service of the system = "parallel accelerators"

Figure 2.2: Room for sequential performance at equal area and energy budget.

width, duplicated functional units, deeper pipelines, larger reorder logic, etc., scale disfa-
vorably with the Instructions Per Cycle (IPC) gains (e.g. two times more transistors does
not increase IPC by two). Pollack summarized this situation in [Pol99] by stating that the
performance of a sequential processor improves with the square root of the number of tran-
sistors. The other reason is that power consumption grows as a super-quadratic function
of frequency [RML+01, SA05]: if a design enables throughput scalable with the number of
cores, energy efficiency gains can be expected by running more cores at a reduced frequency
(e.g. 10 cores at 200MHz each instead of 1 core running at 2GHz will consume less power,
for the same maximum IPC). We illustrate this design spectrum in fig. 2.1.

2.3 Sequential performance and the cost of asymmetry

We suggest above that “smaller is better” and that many small cores will fare better over-
all than few larger cores in our emerging era of ubiquitous concurrency in software. Yet
we should acknowledge that some inherently sequential workloads will still matter in the
foreseeable future, both from legacy software and those applications where no parallel or
distributed algorithms are yet known. To support these while still taking advantage of the
available software concurrency, the processor architect has two recourses. The conservative
approach is to favor homogeneity and slide the design cursor more to the left in fig. 2.1.
This is the approach taken e.g. with the Niagara T4 [SGJ+12]. This simplifies the machine
model exposed to programmers, but comes at the cost of less efficiency for more concurrent
workloads.

The other approach is to introduce static heterogeneity and allocate some areas of the
chip towards throughput and others towards sequential IPC. This is the approach taken
e.g. with the AMD Fusion architecture [Adv], where “accelerator” cores are placed next to
general-purpose cores on the same die. Our illustration of the corresponding spectrum of
possible heterogeneous designs in fig. 2.2 reveals a possible pitfall: the appearance of model
asymmetry as an historical artifact.

Indeed, the shift towards more on-chip parallelism has emerged from a background cul-
ture where a chip was a single processor. The availability of on-chip parallelism may thus
appear as an extension of the well-known single processor. However, if a CMP is considered
as a mostly-sequential processor with optional “parallel accelerators,” this will encourage

2.4. LIMITS OF SPECIALIZATION 37

more fixed-function
components

more general-purpose
components

fewer function
classes

larger diversity
of specialized components

More throughput per watt for fixed-scenario applications
Less throughput overall for user-defined applications

More throughput on average for
user-defined applications

Figure 2.3: Choice between specialized functions or general-purpose cores at equal logic and
energy budget.

software ecosystems to keep their focus on the overall sequential scheduling of workloads.
An opportunity loss ensues: the design of truly distributed applications on chip, which would
consider both throughput-oriented and sequential IPC-oriented cores as various services in
the system that must be shared between applications, is thereby discouraged.

A road to avoid this pitfall is perhaps to place the focus on the protocols that distribute◻
and coordinate workloads between cores on chip, and research how to build protocols that
erase the performance asymmetry from the conceptual models offered through programming
interfaces.

2.4 Specialization is an orthogonal, limited process

Another form of static heterogeneity already in use is one of function: when specific compu-
tations are provided by dedicated hardware logic. For example, a hashing unit to support
cryptography and a Floating-Point Unit (FPU) for arithmetic are fixed-function compo-
nents. The motivation for such specialization is the increased throughput per unit of area
and per watt for the functions specialized and the algorithms that use them.

This opens a spectrum of designs which we illustrate in fig. 2.3. When a chip is dedicated
to a given application scenario3, and the scenario has been profiled, it becomes meaningful
to provision the main computational components of the scenario using specialized hardware.
Conversely, a given selection of specialized features is specific to the scenario considered, and
may not match another scenario which uses different computational components.

In general, feature specialization in a hardware design is an orthogonal way to increase
efficiency, i.e. increase overall application throughput at constant cost or reduce cost at
constant throughput, for given application scenarios.

In contrast, a general-purpose chip is by definition not specialized towards specific sce-
narios. While one may be tempted to suggest mandatory specialized circuits for those few
features that have become prevalent across most fields of computing, for example floating-
point arithmetic, cryptography kernels and signal processing SIMD units for audio/video
stream conversion, the question would still exist of how much logic to invest into these spe-
cialized units as opposed to e.g. more general-purpose cores, larger on-chip memories or a
faster interconnect. Again, the proper methodology to strike the right balance is to consider
the profile of contemporary applications at the time the overall chip design is decided and
specialize for that.

Here we are able to recognize a limit on specialization.

3application scenario: a set of applications used in a specific pattern, for example a multimedia decoder
for a television.

38 CHAPTER 2. TRADE-OFFS IN MICROPROCESSOR DESIGN

In general-purpose applications, workloads enter and leave the system at unpredictable
times. The sharing of hardware components between workloads thus requires on-line, dy-
namic chip resource management. To satisfy the need for allocation times within the scale of
operation latencies, resource management must be supported in hardware [KJS+02]. Since
the amount of state that can be maintained locally on chip is limited, the component mod-
els used by on-line resource managers must be kept simple, which in turn implies that the
diversity of component properties is kept low. An example of this can be found in the
the replacement of multiple bus hierarchies in larger CMPs and Systems-on-Chip (SoCs) by
standardized low-latency protocols on a common packet-switched NoC [HWC04]. Moreover,
once application requirements increase in complexity, for example when starting to account
for time/energy budget allowances [MMB07], the pressure to reduce component diversity to
keep on-line resource managers fast increases further.

These observations push chip designers in two directions. One calls for the full integration◻
of re-configurable logic, e.g. FPGAs, in general-purpose chips, so that functions can be
specialized on demand. Unfortunately, practitioners have not yet come up with update
protocols that can perform reconfiguration at a fast rate. The other direction pushes for
adaptive general-purpose cores connected by a general-purpose NoC, which simplifies on-line
resource management by making pools of resources fungible4. For example, a group of many
in-order RISC cores on a mesh interconnect with configurable frequency and voltage may
be an advantageous replacement for a fixed-frequency specialized SIMD unit with dedicated
data paths, because it is reusable for other purposes without the overhead of hardware
reconfiguration.

In short, while the throughput/cost ratio may be higher for isolated workloads running
on specialized, monolithic units, fungibility of function is more desirable for dynamic, dis-
tributed and unpredictable workloads: it increases predictability of cost and responsiveness
by reducing contention, either on the specialized components themselves or on resource
managers. A recent acknowledgement of this view can be found in [SCS+08].

Note that favoring general-purpose units does not imply mandating homogeneity in chip
designs: each unit can be configurable dynamically based on load and application require-
ments, at a fine-grain, with different throughput and cost parameters; frequency and voltage
are examples. Besides constraints on on-chip resource management, outlined above, there
are other simpler reasons to invest logic towards larger numbers of general-purpose cores
instead of specialized functions. For one, it simplifies code generators by reducing the di-
versity of operation interfaces in the Instruction Set Architectures (ISAs). It also increases
opportunities for fault tolerance by allowing more replacement candidates for faulty units.
Finally, it reduces hardware design costs by allowing tiling.

2.5 Dynamic heterogeneity and unpredictable latencies

Another trend that supports re-configurable or fungible computing resources on chip is the
increasing number of faults as the density of circuits and the number of transistors increases.

Both transient and permanent faults can be considered. Transient faults are caused
mostly by unexpected charged particles traversing the silicon fabric, either emitted by atomic
decay in the fabric itself or its surrounding packages, or by cosmic rays, or by impact from at-
mospheric neutrons; as the density of circuits increases, a single charged particle will impact

4Fungibility is the property of a good or a commodity whose individual units are capable of mutual
substitution. Examples of highly fungible commodities are crude oil, wheat, precious metals, and currencies.

2.6. FINE-GRAINED MULTI-THREADING 39

more circuits. Permanent faults are caused by physical damage to the fabric, for example via
heat-induced stress on the metal interconnect or atomic migration. While further research
on energy efficiency will limit heat-induced stress, atomic migration unavoidably entails loss
of function of some components over time. This effect increases as the technology density
increases because the feature size, i.e. the number of atoms per transistor/gate, decreases.

To mitigate the impact of faults, various mechanisms have been used to hide faults from
software: redundancy, error correction, etc. However, a fundamental consequence of faults
remains: as fault tolerance kicks in, either the latency changes (e.g. longer path through the
duplicated circuit or error correction logic) or the throughput changes (e.g. one circuit used
instead of two).

To summarize, the increasing number of faults is a source of unavoidable dynamic het-
erogeneity in larger chips. Either components will appear to software to enter or leave the
system dynamically, for example when a core must stop due to temporary heat excess, or
their characteristics will appear to evolve over time beyond the control of applications.

This in turn suggests a distributed model of the chip (independently of the suggestion◻
from section 2.2) which can account for the transient unavailability or dynamic evolution of
parts of the chip’s structure.

2.6 Fine-grained multi-threading to tolerate on-chip latencies

The increasing disparity between the chip size and the gate size causes the latency between
on-chip components (cores, caches and scratchpads) to increase relative to the pipeline cycle
time5. This divergence is the on-chip equivalent of the “memory wall” [WM95]. This causes
increasing mandatory waiting times in individual threads. Moreover, these latencies will
be unpredictable, due to overall usage unpredictability in general-purpose workloads, due
to faults as explained above in section 2.5, and due to feature size variability as the gate
density increases [BFG+06]. These latencies must be tolerated by overlapping computations
and communications within cores before the expected throughput scalability of multiple
cores can be achieved.

These latencies cannot be easily tolerated using superscalar issue or VLIW, for the rea-
sons outlined in section 2.2 and [BHJ06a]. To summarize, increasing the amount of concur-
rency in single-threaded cores via superscalar execution mandates non-scalable complexity
in coordination structures like register files. In turn, VLIW is sensitive to mispredicted
branches and variable memory latencies, and thus requires energy-inefficient speculation to
maximize throughput.

An alternative to exploit mandatory waiting times of individual threads is Hardware
Multi-Threading (HMT), i.e. the interleaving of fine-grained threads in the cores’ pipelines
via a hardware scheduler. Note that hardware multithreading does not increase the sequen-
tial performance of individual threads; instead, it makes a system generally more efficient
(less wasted time/energy), and increases overall throughputs when algorithms can success-
fully fill waiting times of some threads by useful work from other threads without increasing
the length of the overall critical path.

The general principle of interleaving multiple threads through a single processor with
smaller time slices than the communication latency they should tolerate is not new [Bem57,

5At constant wire length, the sections above suggest more smaller cores at lower frequency, which would
imply less communication delay relative to the cycle time. However, the wire delay increases relative to the
transit time across a gate; the latter in turn constrains frequency and puts a lower bound on pipeline cycle
time.

40 CHAPTER 2. TRADE-OFFS IN MICROPROCESSOR DESIGN

Sal65, RT74]. However, as the ratio between average on-chip latencies between compo-
nents and pipeline cycle time grows, all inter-component events become candidate for la-
tency tolerance, including memory operations, floating-point operations and inter-thread
synchronization events. In this setting, the latency overhead of software-directed preemp-
tive interleaving of threads over a single physical execution context, i.e. the cost of saving
and restoring PC and per-thread registers, could be too large compared to the latencies to
be tolerated; therefore, hardware-directed scheduling over multiple physical thread contexts
must be used if all latencies must be tolerated.

There have been previous successful approaches to implement HMT in general-purpose
designs. On barrel processors (e.g. on the CDC 6600 [Tho65] where it was first imple-
mented, and later with Denelcor’s HEP [Smi81]), the hardware scheduler assigns equal
time slots to all threads. The MTA [BCS+98, SCB+98] follows up on the barrel pro-
cessor concept and makes scheduling dynamic: only instructions from threads ready to
execute enter the pipeline. On Simultaneous Multi-Threading (SMT) superscalar pro-
cessors [TEL95, MBH+02], unused issue slots are filled by instructions from a secondary
Program Counter (PC).

There are two issues with previous approaches to HMT however. One is throughput
flexibility: the overall throughput should be divided more or less equally between active
threads. This is an issue with pure barrel processors: with N contexts, the performance of
each threads is 1/N even if there are less than N threads active. This has been addressed
in the MTA’s dynamic schedule queue, and is naturally not an issue in processors primar-
ily designed for sequential performance. The other is robustness to branches: with long
pipelines, the cost of mispredictions (or branches taken if there is no prediction) is high, as
the pipeline must be flushed. This is an issue with the 21-stage MTA pipeline and most
contemporary SMT superscalar designs.

These observations suggest that the benefits of HMT are anticiped to be apparent with◻
shorter pipelines and dynamic schedule queues.

2.7 Pressure for hardware-assisted concurrency management

Assuming CMPs with an increasing number of cores and per-core HMT, space scheduling
must be implemented to spread concurrent software workloads to the chip’s parallel execu-
tion resources. Space scheduling can be done either in software or in hardware.

With a software scheduler, each hardware thread is controlled by a program that assigns
tasks using state taken from main memory. Specifically, each hardware thread is controlled
by an instance of a software scheduler in an operating system, which is notified, via inter-
rupt signalling and memory-based communication, upon task creation and begins execution
until a termination or suspension event. This can occur even when thread interleaving is
performed at a fine grain in hardware. It is also relevant even when there is no need for time
sharing of multiple tasks onto a single hardware thread, for example when the number of
tasks is smaller or equal to the number of hardware threads, or when cooperative scheduling
is sufficient. However, the choice of a software scheduler assumes that the workload per task
is always sufficient to compensate the non-local latencies incurred by memory accesses to
task state during schedule decision making and task assignment.

This assumption traditionally holds for coarse-grained concurrency, for example exter-
nal I/O. It can also hold for regular, wide-breadth concurrency patterns extracted from
sequential tight loops, via blocking aggregation (e.g. OpenMP). However the situation is

2.7. HARDWARE CONCURRENCY MANAGEMENT 41

not so clear with fine-grain heterogeneous task concurrency. For example, graph transfor-
mation and dataflow algorithms typically expose a large amount of irregularly structured,
fine-grained concurrency. In these cases, a strain is put on compilers and run-time systems:
they must determine the suitable aggregate units of concurrency from programs that both
optimize load balancing and compensate concurrency management costs.

This motivates the acceleration of space scheduling, considered as a system function,◻
using dedicated hardware logic. This idea to introduce hardware support for concurrency
management is not new; it was pushed by researchers until twenty years ago [Smi81, HF88,
NA89, MS90, CSS+91]. Back then, it met with resistance against the introduction of explicit
concurrency in applications. Now that on-chip software concurrency is the norm, hardware
support deserves renewed attention for two reason.

One is the potential gain in resource fungibility obtained by the replacement of special-
ized SPMD/SIMD units by multiple general-purpose cores (cf. section 2.4). For this to be
tractable, the overhead to dispatch an SPMD task over all participating pipelines must be
comparable to or smaller than the latency of the operation, e.g. a couple dozen pipeline
cycles for most SPMD workloads. To make general-purpose cores an attractive substitute
to specialized SPMD/SIMD units, extra hardware support must exist with low-latency bulk
work distribution and synchronization.

The second argument is cost predictability: when a software scheduler is involved, it
competes with algorithm code for access to the memory components. The overhead of com-
munication and synchronization between software schedulers for task management increases
with the number of hardware threads and interferes with communication for computations,
introducing jitter [ALL89]. This can be avoided by a dedicated task control network separate
from the memory network.

We should acknowledge here that hardware task and thread management somewhat
reduces flexibility in the definition of a task from the perspective of software. As noted
in [LH94], “thread definitions vary according to language characteristics and context-switching
criteria.” We should not consider this argument to be a ban on hardware support for con-
currency management, however. In fact, it seems to us desirable to provide some form
of general hardware/software interface for the definition of concurrent workloads, so that
hardware components with different designs can implement them in a heterogeneous CMP
without creating asymmetry in the machine model exposed to software.

Summary

In this chapter, we have identified the design trade-offs available to a CMP designer in◻
the age of ubiquitous software concurrency. Our analysis suggests chip designs towards
smaller, simpler general-purpose cores where larger cores optimized towards sequential per-
formance serve as a service to the rest of the system. We have also identified the applicability
and limitations of hardware specialization of specific application features. We recognized
Hardware Multi-Threading (HMT) as a means to tolerate unpredictable on-chip latencies
and identified the renewed relevance of hardware-supported concurrency management for
on-chip parallelism. This argument updates and extends previously published justifica-
tions [BJM96, BHJ06a] for architecture research towards hardware microthreading.

Chapter 3

Architecture overview

Abstract

Here we provide an overview of the architectural concepts that characterize hard-
ware microthreading, and outline the architecture design principles which guide its
implementation in hardware. We also present the implementation choices that have
been made prior to our work.

Contents
3.1 Introduction . 44
3.2 Core micro-architecture . 44
3.3 Concurrency management within cores . 48
3.4 Multi-core architecture . 53
Summary . 57

43

44 CHAPTER 3. ARCHITECTURE OVERVIEW

3.1 Introduction

In the previous chapter we have outlined an innovation space for CMPs with smaller, more
numerous general-purpose cores, a distributed structure, focus on inter-core protocols, and
HMT to tolerate diverse on-chip latencies. The work on hardware microthreading at the
University of Amsterdam, performed mostly prior and outside of the scope of our own work,
can be describe as a design activity towards new CMP structures in this innovation space.

The outcome of these activities is an overall CMP architecture model with custom on-
chip components. Yet previous reports on this activity (in [BHJ06a, Has06, BHJ06b, Lan07,
BGJL08, JLZ09a, JLZ09b, Lan1x] and other academic publications from the same authors)
have focused mainly on general motivations and the eventual applicability of the proposed
architecture, without providing comprehensive descriptions of the architecture itself in a way
amenable to study by outsiders to the field, in particular software communities. The reason
for this is that the academic communities around computer architecture are traditionally
competing via performance results, leaving little publication space for describing components
and design trade-offs.

To increase the visibility of the proposed innovation to external audiences, and provide
a technical context to the remainder of our dissertation, the present chapter describes the
general principles of hardware microthreading and its possible implementations. Together
with chapter 4 and the accompanying Appendices A to E, this contemplative description
constitutes our first contribution. This chapter is intended to complement [Lan07, Lan1x],
which detail the design of the hardware implementation which we used as our main reference
platform.

3.2 Core micro-architecture

The micro-architecture of individual cores favors simplicity, i.e. fewer gates per core to
increase the core count on chip and the performance per watt, over sequential performance
per core as suggested in section 2.2. It also combines dynamically scheduled HMT for latency
tolerance with a short pipeline to tolerate branches, as suggested in section 2.6.

3.2.1 Multithreading and dataflow scheduling

The design proposes to extend an in-order, single-issue RISC pipeline as depicted in fig. 3.1:◯

• the fetch stage is extended to use PCs from a thread active queue (FIFO), provided
by a thread scheduler in a Thread Management Unit (TMU). Control bits in the
instruction stream read from the L1 I-Cache (“L1I” in the diagram) indicate when to
switch to the next PC in the queue. A switch occurs also whenever the fetch unit
starts to read from a different line in the I-Cache in order to ensure that no executing
PC misses. If no PC is available, the fetch stage becomes idle;

• the decode stage is extended to translate the register names listed in the instruction
codes by a register window offset provided by the TMU for the current thread. This
provides dynamic addressing in the Integer Register File (IRF) for different threads,
as well as dynamic sizing of the register window in each thread;

• the Register File (RF) is extended with dataflow state bits on each register, which
indicate whether a register is full (has a value), empty (no value) or waiting/suspended
(a value is expected, a thread is waiting on a value). Bypasses from the Arithmetic

3.2. CORE MICRO-ARCHITECTURE 45

MEMORY

MEMORY

DECODE

IRF

ALU

LSU

FETCH

L1D & MCU

L1I

WB

READ

(a) Original RISC pipeline.

MEMORY

MEMORY

DECODE & REGADDR

IRF

ALU

LSU

FETCH & SWITCH

L1D & MCU

L1I

WB

TMU &

SCHEDULER

READ & ISSUE

reschedule

TT & FT

(b) Pipeline equipped with a Thread
Management Unit (TMU) and dataflow
scheduling.

Figure 3.1: Microthreaded extensions on a typical in-order, single-issue 6-stage RISC
pipeline.

Logic Unit (ALU) and Load-Store Unit (LSU) back to the read stage are also extended
to carry the dataflow state of updated registers;

• the read stage is extended to check the dataflow state bits, and suspend the thread
when a register operand is not full;

• the Memory Control Unit (MCU), actually part of the LSU but separated in the dia-
gram for clarity, is extended to set the target register to the waiting state upon L1 read
misses, but without stalling the pipeline nor suspending the thread as the next instruc-
tions may be independent1; meanwhile, load completions are written asynchronously
to the register file and wake up threads, as discussed below and in section 3.2.2;

• the writeback stage is extended to also propagate control signals from the thread
management instructions (discussed further in chapter 4) to the TMU, and reschedule
the PC of the current thread on the active queue if it was descheduled at the fetch
stage but has not suspended in the pipeline;

• the newly introduced Thread Management Unitmaintains state information for threads
(PC, register window offsets, etc.) in dedicated structures on the core.

The notion of “dataflow scheduling” comes from the fact that threads are suspended
upon reading from empty operands, and resume execution only once the operand becomes
available. This asynchrony is implemented by storing the head and tail of a list of suspended
threads in the input register when it is not full. When an asynchronous operation completes
(e.g. a memory load), the register is updated by the corresponding unit and simultaneously
the list of suspended thread(s) is appended to the active queue. Each thread context is de-
scribed by an entry in a dedicated memory, called the thread table, which contains its PC and
next field for schedule and suspend queues. An example is given in fig. 3.2, which illustrates
the thread table after threads 5, 2, 3, 1 have tried to read from a waiting synchronizer.

1That is, the thread does not suspend on the load itself and independent subsequent instructions are
allowed to execute. If some subsequent instruction is data dependent on the missed load, that instruction
will suspend the thread if its operands are not ready yet.

46 CHAPTER 3. ARCHITECTURE OVERVIEW

53 2 -1

0 1 2 3 4 5

head=1, tail=5PC

next content of
waiting synchronizerthread table

Figure 3.2: Example suspended thread list.

Side note 3.1: Active, ready and waiting queues.
For the purpose of a high-level overview it is sufficient to consider a single queue for schedulable threads.
However a naive implementation based on a single queue would be ill-equipped to deal with I-cache misses.
Instead, the detailed design proposes to place schedulable threads on a ready queue, and only move threads
from the ready queue to the active queue (connected to the fetch unit) once their instruction data is in the
I-cache. Upon I-cache read misses, ready threads are placed in a waiting queue instead, and moved to the
active queue upon completion of the I-cache read. See also side note 3.3, [Lan07, Sect. 4.3] and [Lan1x, Sect.
Thread Scheduler].

MEMORY

MEMORY

DECODE & REGADDR

IRF

ALU

LSU

FETCH & SWITCH

L1D & MCU

ALU
(async)

L1I

WB

TMU &

SCHEDULER

READ & ISSUE

reschedule

TT & FT

(a) Microthreaded pipeline with an asyn-
chronous ALU.

MEMORY

MEMORY

DECODE & REGADDR

IRF

ALU

LSU

FETCH & SWITCH

L1D & MCU

FRF

L1I

WB

TMU &

SCHEDULER

READ & ISSUE

reschedule

FPU
(async)

TT & FT

(b) Microthreaded pipeline with an asyn-
chronous FPU.

Figure 3.3: Using asynchronous FUs for latency tolerance.

The scheduling strategy is not purely dataflow oriented however. To avoid pipeline
bubbles, the code is statically instrumented by control bits, visible at the fetch stage, which
indicate whether an incoming instruction may suspend. If so, and there are more threads in
the active queue, the current thread is popped from the active queue (descheduled) after the
current instruction is fetched, and the fetch unit switches preemptively to the next thread’s
PC for the next cycle. This effectively achieves zero-cycle thread switching.

This overall core structure requires only two read ports to the IRF for the read stage, one
read/write port for the writeback stage and one arbitrated read/write port for asynchronous
completions.

3.2.2 Long latency operations and completions

As mentioned previously, upon L1 read misses the MCU writes back memory load comple-◯
tions asynchronously to the register file via a dedicated port. To determine which registers

3.2. CORE MICRO-ARCHITECTURE 47

to update upon completion, the LSU stores the address of the register to update in the L1
cache line2.

Dataflow scheduling can also be used for multi-cycle local operations. For example,
integer multiply and divide can be implemented as asynchronous integer Functional Units
(FUs) which write back their result asynchronously to the register file (fig. 3.3a), waking up
any suspended thread(s) during the write if any. The same principle can be used again for
an FPU, as depicted in fig. 3.3b. The Floating-point Register File (FRF) is equipped with
dataflow state bits as well, and Floating Point (FP) registers are used in the same way as
integer registers for the purpose of scheduling. Since the FUs are thereby fully asynchronous,
it becomes possible to share an FU between multiple cores; this opportunity is exploited in
the configuration studied in chapter 13. Note that despite the scalar structure, there is little
contention on the asynchronous R/W port of the register file because at most one instruction
is issued per cycle, and thus there is at most one completion per cycle on average [HBJ07].

In all these scenarios, the continuation of the long-latency operation, represented by
a list of threads waiting on the value, is stored in the target register until the operation
completes. To avoid losing this continuation and causing deadlock, any further instruction
with the same register as its output operand will suspend as well or stall the pipeline until
the first long latency operation completes3.

3.2.3 Threading to handle pipeline hazards

A perhaps striking feature of the proposed design is the absence of several components found◯
in other processors to handle pipeline hazards.

As seen above, the design self-synchronizes true dependencies. Out-of-order completions
from asynchronous FUs do not need reorder buffers, because further dependent instructions
(both true dependent and output dependent) will self-synchronize in instruction stream
order. A branch predictor becomes unnecessary once tight loops are replaced by dependent
threads, one per loop iteration, interleaved in the pipeline. Branches are also marked to
cause a switch upon fetch, so that instructions from other threads can fill the pipeline slots
immediately following a branch while it is resolved.

There are possible structural hazards, each with candidate solutions. A store to an L1
line waiting on a load may stall to preserve the ordering of memory updates. This can be
solved by storing the continuation of the load in a separate structure than the line itself and
merging stores with the incoming line upon completion. An instruction issued to a busy
non-pipelined long-latency FU, such as FP divide, may stall if there is no space left in its
input buffer(s). The alternative is to increase the number of FUs. A memory operation
reaching the MCU from the pipeline at the same time as a memory completion may stall
until the completion is effected. The solution is to dual port the cache and arbitrate updates
at the granularity of single lines. In any case, solutions exist to avoid wasting the pipeline
slot and rescheduling the thread. While these design choices fall outside the scope of our
work, we mention them here for clarity and completeness.

2Specifically, the L1 line contains the address of the head of a linked list of registers to update, since
multiple loads can be waiting on the same line.

3Whether this situation causes a stall or a suspension is still a topic for research, but is outside the
scope of our work. In either case the architecture should ensure that continuations are not lost. In the early
implementations, this guarantee was not provided, but this was later fixed, cf. section 4.6.1.3.

48 CHAPTER 3. ARCHITECTURE OVERVIEW

3.2.4 Critical latencies, IPC and throughput

The proposed design issues at most one instruction per cycle; the throughput is determined◯
by frequency, pipeline utilization and the number of dataflow misses, i.e. reads from empty
operands.

The two structures with non-trivial access latencies in the critical path of the pipeline
cycle time are the register file and the L1 D-cache. While the number of ports on the register
file is low, the number of registers increases with the desired number of simultaneously
allocated threads. The size of the L1 D-cache, and thus its access latency, increases as the
desired heterogeneity of workloads increases.

To quantify the impact of these structures and predict the maximum allowable core
frequency, CACTI [WJ96] estimates using conservative parameters have been computed.
For example, given a 64-bit core implementation configured with 1024 registers per RF,
a 4-way associative 4KB L1 D-cache, and support for up to 256 threads, the maximum
allowable pipeline frequency at 65nm CMOS lies in the range 800MHz to 1.5GHz; we used
these parameters during our evaluation activities, with a 1GHz pipeline frequency. At 45nm
CMOS, the pipeline frequency can be increased to 2GHz.

3.3 Concurrency management within cores

The design provides dedicated hardware circuits to accelerate the organization of software
concurrency during execution, as suggested in section 2.7. We explain this below.

3.3.1 Thread management

In most processors, the program counter is initialized at hardware start-up to a predefined◯
value, and from then on updated either by branches, traps or interrupts. The traditional
vision is characterized by the assumption that the processor is dedicated to an instruction
stream as long as it is powered. The logical activation and de-activation are indistinguishable
from the physical events “start of world” and “end of world,” which cannot be controlled in
software. This abstraction has been carried over to recent multithreaded architectures,
for example Niagara and HyperThreaded processors, where each thread of execution is
activated upon core initialization and subject to traps and interrupts in the same fashion as
a sequential processor.

In contrast to this, microthreading reifies “thread creation” (processor start up) and
“thread termination” (processor shut down) as hardware events that can be programmed.
The initial configuration of the PC, which in a traditional architecture is fixed statically at
design, is also configurable dynamically during creation. However, the choice of which hard-
ware resources (registers, PC slot) to use is not directly programmable; they are allocated
dynamically by the TMU upon receiving a thread creation event. As we describe below, the
arguments of the event determine the initial PC, as well as how many registers to allocate.

This allows us to compare a conventional approach to hardware multithreading (fig. 3.4)
with the microthreaded approach (fig. 3.5). In the conventional case, the thread is ready to
execute instructions from a pre-configured PC as soon as the chip is powered. The thread
may suspend upon blocking operations, or upon executing the HALT instruction which stops
processing entirely. When halted, only an interrupt can wake the thread up and make it
usable again. With microthreading, thread contexts are initially “empty,” meaning unused
and not mapped to any workload. Upon receiving a thread creation event the TMU allocates

3.3. CONCURRENCY MANAGEMENT WITHIN CORES 49

Ready Waiting

Interrupt;
Cache load completes;

Barrier completes;
Branch resolved

HALT instruction;
Barrier;

Branch misprediction;
Cache missINITIAL

Figure 3.4: Thread states in the Niagara architecture.

ActiveEmpty Suspended

Thread
terminates

Thread
created, PC
configured

Asynchronous
operation
completes

Suspend
on empty
operand

INITIAL

Figure 3.5: Thread states in the microthreaded architecture (simplified).

See also the detailed diagram in fig. 3.6.

Side note 3.2: New instruction vs. control bits for thread termination.
In an alternative implementation, a dedicated “terminate thread” instruction could be added to the ISA.
However, since the architecture already uses out-of-band control bits for scheduling (section 4.4), these can
be extended to provide control over thread termination without the need for a new instruction. This choice
can also increase pipeline utilization for small threads with only a few instructions each: control bits do not
require occupation of a pipeline slot, and threads can terminate and be cleaned up as a side-effect of their
last useful instruction.

a thread context from a thread table, populates the context with a PC and makes it “active.”
From that point forward the thread behaves like a sequential processor. The additional
extension is that program-specified, out-of-band control bits in the instruction stream can
trigger the thread termination event, which stops processing instructions from that thread
and releases the context for another thread creation (cf. side note 3.2).

This basic thread management scheme implements the dynamic creation of logical threads
over physical thread contexts, analogous respectively to tasks and worker threads in software
concurrency managers. The resulting support for a dynamically variable number of hardware
threads is a distinguishing feature of the design.

3.3.2 Preemption and asynchronous events

Traps and interrupts have been designed in sequential processors essentially as a means to◯
multiplex access to the single-threaded processor between a program and an asynchronous
event handler. When the processor has as many thread contexts as there are event channels,
each event handler can run in its dedicated context, and support for control flow interrupts
is not required in principle.

The microthreaded core exploits this opportunity by replacing support for external in-
terrupts with support for a large number of thread contexts. For example, the reference
implementation we use in our work supports 256 thread contexts. The reception of external
events can then be implemented on a control NoC either by active messages [vECGS92],

50 CHAPTER 3. ARCHITECTURE OVERVIEW

Killed

Empty Ready

Suspended

Waiting

RunningActive

Clean up

Thread
creation,

configures PC

"Switch" control
bit encountered

during fetch

Reschedule
at writeback

stage

"End" control bit
encountered
during fetch

Suspend
at writeback

stage

Asynchronous
completion

I-Cache
miss

I-Cache
hit

I-Cache
read completion

Suspend
at writeback

stage

INITIAL

Figure 3.6: Thread states in the microthreaded architecture.

MEMORY

MEMORY

CONTROL

NoC

DECODE & REGADDR

IRF

ALU

LSU

FETCH & SWITCH

L1D & MCU

L1I

WB

TMU &

SCHEDULER

READ & ISSUE

reschedule

TT & FT NCU

(a) Interface for active messages on a control
Network-on-Chip (NoC). A Network Control
Unit (NCU) disassembles incoming NoC pack-
ets to TMU control signals and vice-versa.

MEMORY

MEMORY I/O

DECODE & REGADDR

IRF

ALU

LSU

FETCH & SWITCH

L1D & MCU

IOIF

L1I

WB

TMU &

SCHEDULER

READ & ISSUE

reschedule

TT & FT

(b) I/O interface to translate generic I/O
events to dataflow events and thread cre-
ation requests. The mapping between
I/O channels and control signals is pro-
grammable via configuration registers.

Figure 3.7: Support for incoming external asynchronous events.

3.3. CONCURRENCY MANAGEMENT WITHIN CORES 51

Side note 3.3: Fine-grained thread states.
The actual thread states are detailed in fig. 3.6:

• the interface to memory via an I-Cache suggests a discrimination between “ready,” “active” and “wait-
ing” states, so the latter accounts for ready threads waiting to refill the I-cache;

• the First-In, First-Out (FIFO) nature of the active queue requires the pipeline to remove active
threads from the queue upon switch, and add them back at the writeback stage if they are still
schedulable. This in turn requires a distinction between “active” (still in FIFO) and “running” (not
in FIFO, but still in pipeline);

• to prevent a “waiting” thread from never becoming active, I-cache lines must be locked until the
corresponding thread gets a chance to run some instructions. To achieve this, the following conditions
are met: the I-cache is fully associative; there are more I-cache lines than pipeline stages; and each
line contains a reference counter with the number of waiting/active/running threads currently using
the line, so that it can be evicted only once all associated threads exit the pipeline.

In hardware, these states are not named as state bits in a memory; they can be distinguished by which
hardware components currently refer to the thread entry. Performance counters can be implemented that
keep track of how many threads are in each state.

which carry an entire request for thread creation (PC, optional value argument) directly to
the TMU, or by an I/O interface, which translates interrupt-style control signals to either
dataflow events in the pipeline or thread creation events in the TMU. Both schemes are
illustrated in fig. 3.7. Research is ongoing to implement scheduling priorities by placing
threads created from asynchronous events in different schedule queues.

This preference for active messages and thread creations to signal asynchronous events
over control flow preemption via interrupts is another distinguishing feature of the design.

3.3.3 Configurable register windows

In a traditional RISC, register operands in machine code index the register file physically.◯
There have been three extensions to this in previous work. In the SPARC architecture,
sliding register windows are implemented by updating a Current Window Pointer (CWP)
at function call and return. The CWP in turn offsets the instruction-specified register name
to index a register file containing multiple 16-register blocks [GAB+88, MAG+88]. This
structure was intended to optimize the overhead of function calls by avoiding spills, and in
turn enables an optimization of the physical layout, due to the fact that only one window is
used at a time [TJS95]. In superscalar designs, register renaming [Sim00] changes register
names in instructions to index a larger physical register file than the logical numbering
allowed by the ISA. In hardware multithreaded processors, each thread is configured to use
a private thread register window in a separate region of the physical register file.

These advances have introduced a distinction between the register file, which is the
physical data store, and the logical register window, which is the virtual set of register names,
i.e. virtual register addresses, that can be used by machine instructions. The translation of
names to a physical address in the store is performed in the issue stages of the pipeline.

The microthreaded core exploits this opportunity further and introduces two innovations:
the ability to configure the size of the logical register window and the ability to configure the
overlap between register windows of separate threads.

Variable window sizes are motivated by the need to increase utilization of the register file,
which is typically the most expensive resource on the core. The argument is that tolerating
on-chip latencies requires concurrent workloads that are short, possibly a few instructions.
This in turn entails that some threads only require a few registers, i.e. potentially many

52 CHAPTER 3. ARCHITECTURE OVERVIEW

less than the maximum window size allowable by the ISA. By mapping only the part of the
logical register window that is effectively used by a short-lived thread, it becomes possible to
create more threads on the same number of physical registers and RF utilization is increased.

For example, the reference configuration we use provisions 1024 physical registers and
256 thread contexts. This leaves room for 33 threads with a fully mapped 31-register ISA
window, or 256 threads with only 4 registers mapped in each, or heterogeneous combinations
of any intermediate configuration. A dedicated hardware Register Allocation Unit (RAU)
in the TMU performs the dynamic allocation and de-allocation of physical registers upon
thread creation and termination. Upon exhaustion, context allocation is delayed until there
are enough registers available to satisfy a request.

Meanwhile, overlapping register windows enable fast thread-to-thread dataflow commu-
nication and synchronization. When two instructions in separate threads target the same
physical register, the dataflow scheduler (cf. section 3.2.1) ensures that the consumer instruc-
tion is scheduled only when the producer instruction completes. Moreover, if the instructions
of both threads interleave in the pipeline, the bypass bus ensures that the data flows from
one thread to another without any waiting time. While this concept seems challenging to
exploit in a compiler or hand-crafted program, we shall explore possible uses in chapters 4,
6 and 8 and section 13.8.

This fine-grained register window management combined with the exploitation of shared
registers for zero-cycle dataflow synchronization are yet two other distinguishing features.

3.3.4 Synchronization on termination

Synchronization on termination, also called “waiting” or “joining,” is a fundamental feature◯
of concurrency management systems.

A common approach to implement this primitive is found in Unix, described for example
in [MBKQ96, Chap. 4]: when a task terminates, it is moved from the “active” state to the
“zombie” state, and its parent (if any) is notified with a signal. Independently, another task
can use the “wait” primitive which suspends the waiting task until the target task terminates.
When the target task terminates, the “wait” primitive completes and returns the termination
status of the target task to the waiting task.

The proposed architecture design implements this synchronization in hardware. A con-
trol event to the TMU, called request to synchronize can associate a thread context to the
address of a register. When the thread terminates, the TMU writes a value into this regis-
ter. Independently, another thread which has this register mapped into its logical register
window can initially set the register to the “empty” state, and then start reading from it,
which causes the thread to suspend. The waiting thread only resumes execution once the
register is written to, i.e. when the target thread terminates.

3.3.5 Bulk creation and synchronization

The features described so far are sufficiently general to support nested fork-join concurrency◯
in programs, with threads created and synchronized one at a time. Yet the proposed design
makes another step towards reducing management overheads.

Considering SIMD/SPMD workloads of a few instructions over a large data set, the over-
head of explicit instructions to create and synchronize every instance of the parallel workload
would not provide any benefit compared to a partially unrolled sequential loop. Instead, the
TMU provides a dedicated, autonomous Thread Creation Unit (TCU) in hardware which

3.4. MULTI-CORE ARCHITECTURE 53

is able to create and start threads asynchronously, at a rate of one every pipeline cycle or
every other cycle, initialized by a single bulk creation event. A bulk creation event specifies
a common initial PC for all created threads and a common register window configuration,
including a common overlap factor between all created windows. To distinguish the created
threads, the bulk creation event also specifies a configurable range of logical thread indexes
assigned sequentially by the TCU to each created thread, and pre-populated in a private
register upon thread initialization.

For synchronization, the TMU binds a single bulk synchronizer to all the threads cre-
ated from a single bulk creation event. This bulk synchronizer acts as a semaphore. This
modifies the synchronization on termination described in section 3.3.4: the event “request to
synchronize” binds the bulk synchronizer, and not a single thread context, to a configurable
register. Only when all associated threads terminate, does the bulk synchronizer cause the
TMU to write a value to the target register, and let the waiting thread wake up. This allows
a thread to wait on all threads in the group in a single register read. Beyond the reduction
of thread management overheads for groups of related workloads, this facility also reduces
fragmentation in the RF by grouping allocation and de-allocation requests in the RAU.

This particular feature which binds a set of threads by a common bulk creation event
and a common bulk synchronization structure is another distinguishing trait of the proposed
design. Groups of bulk created threads are referred to as “families” in previous publications;
we discuss this term further in section 4.2.1.

3.4 Multi-core architecture

Placing multiple simple cores together is not sufficient to guarantee scalability of through-
put with the number of cores. Namely, the interconnect must cater to scalable throughput
(cf. section 2.2). Also, dedicated circuits must be present to provision low-latency distri-
bution of data-parallel workloads to multiple cores, if these cores are to become an advan-
tageous substitute to specialized SPMD/SIMD workloads (cf. section 2.4). We explain the
corresponding characteristics of the proposed CMP design below.

3.4.1 Memory architecture

The core design is optimized for tolerating latencies using asynchronous transactions with◯
multiple in-flight operations, and is thus intended for use with memory systems that sup-
port either split-phase transactions or request pipelining. However, the concepts behind
microthreading do not mandate a specific memory system: a designer may choose to inte-
grate microthreaded cores with memory technology implemented independently. This was
illustrated on a FPGA, where the UTLEON3 [DKK+12] microthreaded cores are connected
to an industry-standard memory bus.

Regardless of which memory system is used, system-level design choices will impact the
machine model significantly. First, an implementation can choose between a distributed
memory architecture, where each cores sees a separate address space from all other cores.
Or it might choose to use a shared address space. Then it can choose between different
caching protocols. Depending on these choices, a memory model is shaped into existence.

The proposed architecture assumes a model based on a shared address space over multiple
caches and backing stores. This in turn requires to consider a spectrum of design choices
related to cache coherency. At one end of the spectrum an implementation may guarantee
that all stores by all cores are visible to all other cores in the same order, for example by

54 CHAPTER 3. ARCHITECTURE OVERVIEW

DIR

L2
L2

L2
DIR

L2
L2

L2

DIR

L2

L2

L2

MC MC

MC

RAM

RAM RAM

Figure 3.8: Example proposed distributed cache topology.

Multiple cores can share a single L2 cache via a local snoopy bus. “DIR” is shorthand for “cache
directory”; “MC” is shorthand for “memory controller.”

Side note 3.4: Using a distributed cache between microthreaded cores.
To demonstrate the usability of microthreading with larger core counts, a scalable memory system is needed.
As a step in this direction, research efforts have been invested separately from our work in a dedicated
synchronization-aware, distributed cache network.
The main property of the proposed distributed cache is that cache lines are automatically migrated where
they are used. Concurrent loads create multiple copies of a cache line, while concurrent stores may gather
a single updated copy to the location of the last store. The proposed cache architecture connects multiple
cores to a shared L2 cache, and organizes L2 caches in rings. For a small-scale system (e.g. less than 64
cores) a single ring is used; for larger configurations a hierarchy of rings is used (cf. fig. 3.8). An early version
of the protocol has been published [ZJ07, DZJ08] and research is ongoing on this technology concurrently
to our work. It assumes memory controller(s) to external Random-Access Memory (RAM) connected to the
top-level ring, and pipelined RAM interfaces, such as JEDEC’s DDRa and Rambus’ XDRb.

aJEDEC Standard JESD79 and later revisions, cf. http://www.jedec.org/.
bhttp://www.rambus.com/xdr

broadcasting a lock on the cache line before each store is effected and invalidating all copies.
At the other end of the spectrum, no automatic consistency is implemented in hardware,
so software must control cache coherency explicitly. Our reference implementation uses a
memory network of distributed caches (side note 3.4) which lies somewhat in the middle: it
proposes to effect memory stores in local copies of cache data, and only propagate and merge
update copies prior to bulk creation of threads or bulk synchronization on termination. With
this implementation, memory can be shared consistently across bulk events, but may not
be consistent between sibling threads that are not related by bulk events.

Different implementation choices thus have a dramatic impact on the memory model. In
chapter 7, we revisit this topic and further explore how to make these choices independent
from concurrency management issues from the software perspective.

http://www.jedec.org/
http://www.rambus.com/xdr

3.4. MULTI-CORE ARCHITECTURE 55

3.4.2 Concurrency management across cores

3.4.2.1 In other multi-processor systems

Work distribution across multiple performance-oriented general purpose processors has tra-
ditionally been coarse-grained and ill-suited for fine-grained, low-latency distribution of
workloads. The conventional mechanism can be described in general terms: code and data
are shipped to a memory close to the core at a fixed address; this address is configured in
the interrupt vector of the target processor; then an Inter-Processor Interrupt (IPI) is sent
to the remote processor to trigger execution. Synchronization on termination is expensive:
the thread requesting to wait from core A registers its identity in memory to a system-level
scheduler in software; when a target thread on core B terminates, its local scheduler looks
up any waiting thread in memory, then sends an IPI from B to A, which signals A’s soft-
ware scheduler; A’s scheduler then looks up the origin of the IPI in memory and triggers
resumption of the waiting thread.

This is the protocol used in most of the Top5006 and Green5007 supercomputers at
the end of 2011, which are based on IBM’s POWER, Intel’s Xeon, AMD’s Opteron and
Sun’s/Fujitsu’s SPARC6. It is used even between multiple cores on the same chip. It is
also used with most processors in embedded SoCs, including all ARM and MIPS-based
cores. This protocol is due to the processors’ ISA: in most ISAs only memory-related
operations and interrupt instructions have the ability to communicate and synchronize with
other components in the system.

This protocol is coarse-grained for three reasons. First, the overhead of a full point-
to-point memory synchronization requires full cache lines to be exchanged between the
initiator and the target, even if the target workload operates on independent streams of
data. Then a scheduler in software on each processor must disambiguate each incoming
IPI by looking up the initiator and parameters in shared structures in memory. Then the
abstraction mismatch between the interrupt-based signalling mechanism and the thread-
based programming model requires indirection through a software stack to effect the control
events. This implies initialization and start-up overheads of hundreds if not thousands of
pipeline cycles, and similar overheads again for synchronization on termination.

Incidentally, other hardware protocols for work distribution have existed and continue
to be popular to this day. For example in IBM’s Cell Broadband Engine, the Memory Flow
Controller (MFC) inside each Synergistic Processing Element (SPE) provides a hardware
request queue where the Power Processor Element (PPE), a general-purpose PowerPC core,
can write new thread requests remotely. The MFC then autonomously starts execution
of the thread on the Synergistic Processing Unit (SPU) [GEMN07]. Another example is
NVidia’s Tesla architecture. On this General-purpose GPUs (GPGPUs), the host-GPU
interface streams units of work to the Texture/Processor Clusters (TPCs) via dedicated data
paths in hardware. They are then decoded on the TPC and distributed to the Streaming
Multiprocessors (SMs) via dedicated, autonomous SM controllers [LNOM08].

3.4.2.2 In the proposed architecture

Meanwhile, we have already explained in section 2.7 that further exploitation of multiple◯
cores on chip will require lower concurrency management latencies. The proposed multi-core
architecture design provides two features in this direction.

6http://www.top500.org
7http://www.green500.org

http://www.top500.org
http://www.green500.org

56 CHAPTER 3. ARCHITECTURE OVERVIEW

Side note 3.5: Sub-events for remote creations.
While delegation requests conceptually include all the parameters of a bulk creation, we will find useful to
separate the phases in sub-events, namely requests for allocation of thread contexts and registers, remote
register accesses to populate initial value in registers, bulk configuration requests to configure logical index
ranges, and creation requests which trigger the actual activation of threads in the TCU.

The first feature is the ability of the TMU to generate active messages on the NoC, upon
local reception of a delegation request control event from the pipeline. This complements the
mechanism described in section 3.3.2 and fig. 3.7a: just as cores can receive remote thread
creation events from the NoC, they can symmetrically generate those requests as well (cf. also
side note 3.5). For synchronization on termination, the protocol from section 3.3.4 is also
extended: a request for remote synchronization generated by the pipeline is forwarded by the
TMU through the NCU and NoC, and is then received by the remote TMU which associates
both the originating core address and register address to the target thread context. When
the thread terminates, its local TMU sends a remote register write message through the NoC
to the TMU of the processor hosting the waiting thread, which writes the value to the RF
which in turn causes the thread to wake up. This feature enables fully general concurrent
work creation and synchronization with an overhead of only a few cycles between adjacent
cores on the NoC.

The other feature is an extension of bulk creation to support automatic distribution
of threads across cores. In the TMU, an optional parameter can specify to restrict the
number of logical thread indexes to create locally, and forward the remainder as a bulk
creation request to another core. The total number of cores to use this way is also a
parameter, or a feature of the NoC topology (which can be organized in static clusters).
The thread creations are then effected locally by the TCUs in parallel. This way, a single
bulk creation request sent to one core can trigger simultaneous thread creation on multiple
cores. Similarly, a parameter can cause the TMU to duplicate automatically a register
write request to all the cores participating in the bulk creation, implementing a broadcast
operation. For synchronization on termination, the bulk synchronizers are chained from one
core to another when the bulk creation request is forwarded, so that the bulk synchronization
on the first core only completes when all “next” cores have synchronized locally. In short,
this combination of features enables the automatic distribution of parallel workloads across
cores using single requests to one core, including the parallelisation of thread creation itself.
We describe cross-chip distribution further in chapter 11.

While setting up a coordinated group of threads across cores using this latter feature set
may seem complicated, as we will see in chapter 4 this complexity is hidden behind simple
abstractions.

3.4.3 Logical and physical networks

The previous sections have outlined three logical networks:◯

• the memory network, used for loads and stores issued by programs;
• the delegation network, used for program-generated remote concurrency management

messages across arbitrary cores;
• the distribution network, used for TMU-controlled bulk distribution across neighboring
cores.

3.4. MULTI-CORE ARCHITECTURE 57

10 9 6 5

11 8 7 4

12 13 2 3

15 14 1 0

26 25 22 21

27 24 23 20

28 29 18 19

31 30 17 16

L2 L2

L2L2

COMA DIRECTORY

L2 L2

L2L2

R R R R

R R R R R

R

RRRRR

Figure 3.9: 32-core tile of microthreaded processors.

White numbered tiles represent cores. “R” tiles represent routers for the narrow delegation mesh.
The thick black link between cores represents the linear bulk distribution network.

Event name Parameters
thread creation
(subsumed by bulk creation)

PC, register window layout

request for synchronization
(subsumed by bulk sync.)

target thread context, address of register
to write to upon termination

bulk creation common PC, common register window
layout, overlap factor, logical thread in-
dex range

request for bulk synchronization target bulk synchronizer, address of reg-
ister to write to upon termination

remote register reads & writes target register address, value (for writes),
address of register to send value to (for
reads)

Table 3.1: Control events to the TMU.

These logical networks can be implemented either on top of a shared physical NoC, or
using separate physical links for maximum throughput. For example, the reference config-
uration we use implements a dedicated distributed cache network for memory with cache-
line-wide channels, a narrow mesh for delegations, and a linear word-wide array for bulk
distribution, as illustrated in fig. 3.9. This specific network design uses a space filling curve
to establish a multi-scale affinity between core addresses and caches, to preserve maximum
data locality in bulk creations regardless of the number of cores involved.

58 CHAPTER 3. ARCHITECTURE OVERVIEW

State Update events
Program counters Thread/bulk creation, branches
Mappings from logical register windows to
the register file

Thread/bulk creation

Logical index ranges Bulk creation
Bulk synchronizers Bulk creation, bulk synchronization

Table 3.2: Private state maintained by the TMU.

This state is maintained in dedicated hardware structures close to the TMU.

Unit Description
Thread Creation Unit (TCU) Responsible for bulk thread creation and

logical index distribution
Register Allocation Unit (RAU) Responsible for dynamic allocation and

de-allocation of register ranges in the RF

Table 3.3: Logical sub-units in the TMU.

Summary

The overall chip design proposed by the architects at the University of Amsterdam is a◯
dataflow/von Neumann hybrid architecture with hardware multithreading, which uses a
large register file as the synchronization name space for split-phase long-latency operations.
The core architecture has been co-designed with a dedicated concurrency management pro-
tocol, implemented in hardware in a coordinating Thread Management Unit (TMU), for
controlling hardware threads and composing cores into a many-core chip. We summarize its
features in tables 3.1 to 3.3. It is programmed via input control signals, also named “con-
currency management events.” These control signals are in turn generated by the pipeline
in response to new machine instructions, or from a Network-on-Chip via active messages.
We describe its programming interface further in chapter 4.
The architecture does not constrain the memory implementation but strongly suggests a
scalable memory architecture with support for split-phase transactions and request pipelin-
ing. Research is ongoing to provide a distributed cache network to that effect. Remote
concurrent work creation and synchronization is supported with hardware primitives for ac-
tive messages and remote register accesses on the NoC. Bulk creation and synchronization
is further optimized by providing low-overhead automatic distribution across multiple cores
by the TMU.

Chapter 4

Machine model and hardware interface

Abstract

This chapter introduces the machine model and the machine interfaces offered by
various implementations of hardware microthreading. We present the general concepts
common to all implementations, then review how design choices may lead to different
machines interfaces. We identify major “generations” of interfaces and introduce the
low-level assembly languages available to program the various implementations.

Contents
4.1 Overview . 60
4.2 Concepts . 60
4.3 Semantics . 63
4.4 Out of band control bits . 71
4.5 Interactions with a substrate ISA . 72
4.6 Faults and undefined behavior . 75
4.7 Specific implementations and their interfaces . 77
4.8 Assembler and assembly language . 79
Summary . 80

59

60 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

4.1 Overview

This chapter is organized as follows:

• section 4.2 presents the general concepts underlying the machine model, and section 4.3
explores the various semantics that can be attached to these concepts in specific im-
plementations;

• section 4.4 explains how the scheduling hints and thread termination events can be
provided by programs;

• section 4.5 reviews how the introduction of hardware microthreading in an existing
ISA interacts with the substrate ISA’s features;

• section 4.6 outlines potential behaviors for unplanned or erroneous situations;
• section 4.7 introduces actual implementations and their specific interfaces, and rec-
ognizes three major “generations” of implementations. Section 4.8 then reviews the
concrete assembly languages for these implementations.

4.2 Concepts

Regardless of the specific implementation choices, a hardware microthreaded architecture◯
provides the following:

thread contexts, logical threads and thread programs.
Thread contexts are management structures in the Thread Management Unit (TMU)
that define individually scheduled instruction streams in the microthreaded pipeline.
They are analogous to the “threads” of [II11a, II11b] and existing threading APIs
(e.g. POSIX [Ins95]), the “workers” of OpenMP [Ope08] or the “harts” of [PHA10].
Logical threads are the individual units of work defined by programs via the bulk
creation event, using a common starting PC and a logical index range. The TMU
maps logical threads sequentially over one or more thread contexts. Once activated,
logical threads execute a thread program from the initial PC to completion. As such,
logical threads are akin to the “blocks” of Grand Central Dispatch (GCD) [Sir09, App]
or the “tasks” of OpenMP and Chapel [CCZ07].
Thread contexts are independently scheduled, and may interleave while they are active.
However, there is no interleaving of logical threads within single thread contexts. Only
logical threads are visible to programs; programs can control thread contexts only
indirectly via the placement of work, discussed below.

thread program actions and synchronization.
Thread programs contain instructions that perform actions on the environment. Each
instruction has some encoding which specifies its input and output operands. The
encoding is assumed to derive from a RISC ISA. In particular, operands are encoded
either as immediate values or as a register name, which is a fixed offset into a local
storage space.
Compared to a conventional register machine, where this storage space would be
general-purpose memory cells in hardware, i.e. physical registers, the microthreaded
core maps instruction operands to dataflow synchronizers. These implement I-variables:
a storage cell which may either contain a value (“full”) or be “waiting” on a value not
yet available [ANP87]. These are then used to provide asynchrony between individual
instructions, as a long-latency operation can now simply set its output operand to

4.2. CONCEPTS 61

“waiting” instead of actually stalling the processor. In other words, the microthreaded
machine model subsumes existing instruction sets by substituting dataflow synchro-
nizers for registers. This design was originally proposed in Denelcor’s HEP [Smi81]
and Tera’s MTA [SCB+98] (later Cray’s XMT).
However, memory outside of the core is not synchronizing : the indirect storage acces-
sible via “load” and “store” instructions behaves as regular data cells which always hold
a value, i.e. do not synchronize. This is where the design diverges conceptually from
the HEP and the MTA, both of which provide synchronization on the entire memory
space. The rationale for this stems from the observation that negotiating synchro-
nization is a communication activity, and that in general-purpose environments the
software implementer is most competent to recognize computation patterns and orga-
nize communication. By restricting implicit synchronization to core-local structures,
the machine interface defers the responsibility to organize non-local activities, includ-
ing arbitrary patterns of inter-core synchronization, to explicit remote synchronizers
read/write operations controlled by software.

synchronous vs. asynchronous operations.
The existence of dataflow synchronizers allows us to distinguish between:

• synchronous operations, which complete with a full output operand. These guar-
antee that any further instruction using the same operand as input will not sus-
pend.

• asynchronous operations, which complete with a non-full operand in the issuing
thread, while letting the operation run concurrently. These can be said to return
a “future”1 on their result.

bounded and unbounded operation latencies.
The existence of asynchronous behavior mandates a comment on operation latency,
necessary to determine conditions to progress in executing programs.
In the proposed design we can distinguish between:

• operations with bounded latency : once the operation is issued, it is guaranteed to
complete within a finite amount of time regardless of non-local system activity;

• operations with unbounded latency : whether the operation completes at all is de-
pendent on non-local system activity, e.g. data-dependent branches in the control
flow of other threads.

Intuitively, computation operations issued by programs should have a bounded la-
tency, especially arithmetic and control flow. Yet some unbounded latencies become
possible depending on the choice of semantics for concurrency management, discussed
in section 4.3 below. In general, memory loads and stores, FPU operations, remote
synchronizer reads/writes, and bulk creation after allocation of a creation context
have a bounded latency; whereas requests to allocate new concurrency resources and
requests to synchronize on termination of another thread may be indefinitely delayed
by non-terminating threads, and these operations thus have an unbounded latency.

local wait continuations, remote wake ups.
The synchronizing storage is “local” to the core’s pipeline and its state is maintained
by the flow of local instructions. In particular, only local instructions can suspend on a

1The concept of “future” is introduced in [Hal85]: “The construct (future X) immediately returns a
future for the value of the expression X and concurrently begins evaluating X. When the evaluation of X
yields a value, that value replaces the future.”

62 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

dataflow synchronizer. This choice guarantees that wake-up events to waiting threads
are always resolved locally upon writes to synchronizers.
Yet, synchronizers can be accessed remotely across the NoC. For example, a thread
running on one core may write remotely to another core’s synchronizers and wake up
any threads waiting on it on that other core.

virtual mapping of the synchronization space, dataflow channels.
The fixed offsets in instruction operands do not have a static mapping to synchro-
nizing storage; instead, the set of visible dataflow synchronizers can be configured per
thread during bulk creation, and define a “window” on the synchronizing storage. In
particular:

• if a synchronizer is visible from only one thread it is said to be “private,” or “local,”
to that thread. Since values stored in it are subsequently readable by further
instructions, it behaves functionally like a regular general-purpose register.

• two or more threads can map some of their register names to the same synchro-
nizers. When this occurs, the configuration can be said to implement a dataflow
channel between the threads: a “consumer” instruction in one thread will syn-
chronize with a “producer” instruction in a different thread. Also, “consumer”
instructions which read from a dataflow channel may have an unbounded latency
as per the definition above.

bulk creation contexts.
Programs use bulk creation of logical threads to define work. Yet bulk creation is itself
a multi-phase process which involves e.g. reserving thread contexts in hardware and
effecting the creation of logical threads (cf. section 3.3.5). This process itself has both
input parameters and internal state. Its parameters are the initial PC, a logical index
range, and potentially configuration information for the mapping of register names to
synchronizers. Its internal state tracks which logical threads have been created and
terminated over time.
Both the parameters and internal state must be kept live until all logical threads have
been created, especially when some thread contexts must be reused for successive logical
threads. As such they constitute collectively a bulk creation context which must be
allocated, configured and managed.

dataflow synchronizer contexts.
During bulk creation, the TMU can allocate a subset of the synchronizing data storage
to map it in the visible window of new threads. Conversely, synchronizers can be
released when threads terminate if they are not mapped elsewhere. The set of dataflow
synchronizers allocated to a group of bulk created threads thus forms their dataflow
synchronizer context, a resource that must be managed jointly with the threads.

bulk synchronizers.
Programs use bulk synchronization to wait on termination of threads. As discussed in
section 3.3.5 this implies space to store “what to do on termination” for the group of
threads waited upon, and a semaphore. These bulk synchronizers, separate from the
dataflow synchronizers, also constitute state which must be allocated, configured and
managed.

automatic work placement and distribution.
When issuing bulk synchronizations, programs can define that the work is to be cre-
ated either locally or remotely, and on either one or multiple cores. This placement
information is provided early and serves to route the bulk creation event to the appro-

4.3. SEMANTICS 63

priate TMU on chip. When targeting multiple cores in one request, multiple TMUs
cooperate to spread the logical index range over the cores.
Beyond the creation of threads, the TMUs also assist with the distribution of data. A
single event can be sent after bulk creation to broadcast a value to the synchronizers
of multiple cores, to serve as input to the logical threads.

binding of logical threads to cores.
In the proposed design, there is no mechanism provided to migrate the contents of
management structures across cores after they are allocated. Since the state of syn-
chronizers is not observable in software either, this implies that logical threads cannot
be migrated to another core after they are created.

4.2.1 Families of logical threads

From the previous concepts, we can derive the notion of “family” to designate the set of
logical threads that are created from a single bulk creation.

Like logical threads, families are defined by programs and only exist indirectly through
the bulk creation contexts, thread contexts and bulk synchronizers allocated and managed
for them in hardware. Although it merely designates an abstract concept, the term “family”
forms a useful shorthand for the collective work performed by a bulk created set of logical
threads. It is used with this meaning in the remainder of our dissertation and other literature
about hardware microthreading.

4.3 Semantics

For the TMU to be programmable, some set of semantics must be associated to its state
structures and their control events. Semantics establish the relationships between state
structures and how state evolves at run-time in response to events. To define these semantics,
previous research on hardware microthreading has explored three mostly orthogonal aspects:

• how to configure and trigger bulk creation and bulk synchronization (section 4.3.1);
• how to manage the mapping of logical threads to cores and thread contexts (sec-

tion 4.3.2);
• how to manage the mapping of logical threads to dataflow synchronizers (section 4.3.3).

4.3.1 Bulk creation and synchronization

The organization of bulk creation and synchronization determines primarily the relationship◯
between bulk creation contexts, bulk synchronizers and thread contexts. We do not consider
here how many thread contexts are allocated and how many logical threads are created over
them, this will be covered in section 4.3.2.

Any choice of semantics must respect the following dependencies:

• a bulk creation context must exist before the allocation of thread contexts and the
creation of logical threads starts;

• a bulk creation context must persist until all logical threads have been created;
• a bulk synchronizer must exist before:

– the earliest point at which another thread may issue a request for bulk synchro-
nization;

64 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

– the first logical thread is created;

whichever comes first;
• a bulk synchronizer must persist until after:

– the latest point at which another thread may request bulk synchronization;
– all threads have terminated and a requesting thread is notified;
– the bulk synchronizer is explicitly released;

whichever comes last.

Then any choice of semantics must select the interface to use in programs, i.e. :

• what machine instruction(s) trigger these processes;
• what parameters can be provided and how;
• under which condition a bulk creation or bulk synchronization request synchronizes
with the issuing thread;

• what “output” either of these requests returns to the issuing thread.

In our work, all implementations provide at least the following primitives:

allocation of a bulk creation context.
This takes as input some placement information, and performs the allocation of both a
bulk creation context, a bulk synchronizer, a thread context and a set of synchronizers,
on the target core(s). It is an asynchronous operation which produces a future on an
identifier to the bulk creation context to the requesting thread. Its latency is discussed
in section 4.3.1.1 below.
The reason why the allocation is combined is to guarantee that once the initial alloca-
tion succeeds, it will always be possible to create logical threads and synchronize on
their termination afterwards.

configuration of bulk creation.
This takes as input an identifier to a bulk creation context and writes a value in the
corresponding hardware structures, possibly remotely. It is an asynchronous operation
with bounded latency and no result.

Implementations then differ in how they deal with allocation failures, and how they
trigger bulk creation, synchronization and resource de-allocation. We discuss these further
in sections 4.3.1.1 and 4.3.1.2.

4.3.1.1 Allocation failures

We have found three main classes of interfaces that differ in how they deal with allocation◯
failures:

• in a suspending interface, allocation always suspends until resources become avail-
able. In these semantics, allocation always appears to succeed from the perspective of
running threads but may have an unbounded latency.

• in a soft failure interface, allocation failures cause a failure code to be reported as a
value to the requesting thread with a bounded latency, for handling by the requesting
thread program. This allows the thread program to opt for an alternate strategy,
e.g. allocation with different placement parameters or serializing the work.

4.3. SEMANTICS 65

• in a trapping interface, allocation failures are handled within a bounded latency as a
fault, and trigger a trap to be handled by a “fault handler” separate from (and possibly
invisible to) the thread program.

We found implementations providing both suspending and soft failure interfaces, as
discussed in chapter 10. The latter trapping interface is theoretical as of this writing, yet
we believe it will become relevant in future work where issues of placement are managed by
system software separate from application code.

4.3.1.2 Fused vs. detached creation

We found two main classes of implementations that differ in how they trigger bulk creation◯
and synchronization:

• in a fused creation interface, bulk creation, bulk synchronization and resource de-
allocation are fused in a single asynchronous operation:

fused creation.
This takes as input an identifier to a bulk creation context and an initial PC.
After issue, the operation triggers the start of logical thread creation, and also
requests bulk synchronization and resource release on termination of all logical
threads. The request for bulk synchronization binds the output operand of the
fused creation operation with the bulk synchronizer.
The operation thus produces a future on termination of the logical threads, with
an unbounded latency. All the bound resources are de-allocated automatically
after completion is signalled.

• in a detached creation interface, bulk creation, bulk synchronization and resource de-
allocation become independent asynchronous operations:

creation.
This takes as input an identifier to a bulk creation context and an initial PC. After
issue, the operation triggers the start of extra context allocation and logical thread
creation. As soon as logical thread creation starts (which may be later than the
issue time, due to network latencies), an identifier for the bulk synchronizer is
returned to the issuing thread.
The creation operation thus produces a future on the start of creation with a
bounded latency. The latency is bounded because the prior allocation guarantees
that creation is always possible.

synchronization on termination.
This takes as input an identifier to a bulk synchronizer. After issue, the operation
binds its output operand to the named bulk synchronizer.
It thus returns a future on termination of the logical threads with an unbounded
latency.

de-allocation.
This takes as input an identifier to a bulk creation context. It has no output and
completes with a bounded latency. The operation triggers either de-allocation of
the resources if the work has completed, or automatic de-allocation on completion
if the work has not completed yet.
This interface does not define the behavior when a synchronization request is
issued after a de-allocation request (there is then a race condition between thread

66 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

termination and the bulk synchronization request); however, it guarantees that
bulk synchronization is signalled before de-allocation if it was registered first.

4.3.2 Mapping of logical threads to cores and contexts

The design proposes to minimize the necessary amount of placement information to provide
during allocation, while providing extra control to thread programs when desired. The
placement information can specify “where” on the chip to allocate in terms of cores, then
“how much” on each core to allocate in terms of thread contexts, then “how to spread” the
logical index range over the selected thread contexts.

4.3.2.1 Mapping to cores

To select the target core(s), the following parameters are available to programs:◯

inherit. Also called “default” placement in previous work. The placement information that
was used to bulk create the issuing thread is reused for the new bulk creation request.

local. The bulk creation uses only the core where the issuing thread is running.
explicit. An explicit parameter is given by the program to target a named core, or cluster,

on the chip. The format of explicit placements then depends on the implementation,
although recent research has converged to provide a system-independent addressing
scheme (cf. chapter 11).

These parameters are intended to control locality and independence of scheduling be-
tween application components.

4.3.2.2 Selection of thread contexts

To select thread contexts, a single parameter called “block size” or “window size,” controls◯
the maximum number of thread contexts to allocate per core during bulk creation. This
parameter is optional; a program may choose to leave it unspecified, in which case the
hardware will select a default value. This parameter bounds per-core concurrency, which is
useful to control the working set size, and thus cache utilization, on each core. It can also
help control utilization of the synchronizer space as explained in [CA88].

In the implementations we have encountered, an undefined block size selects maximum
concurrency, i.e. allocate all thread contexts available on each core, or the number of logical
threads to execute per core, whichever is lower. However, we are also aware of ongoing
discussions to change this default to a value that selects the number of thread contexts
based on the local cache sizes, to minimize contention. The choice of default behavior
should thus be considered implementation-dependent.

4.3.2.3 Distribution of the logical indexes

In the proposed interface, a requesting thread can specify an index range by means of start,◯
limit and step parameters (side note 4.1). Compared to a potentially simpler interface
which would only allow programs to set the number of logical threads, this interface enables
direct iteration over data sets, in particular the addresses of array items in memory. These
parameters are optional, and default to 0, 1, 1, respectively.

4.3. SEMANTICS 67

Side note 4.1: Logical index sequence.
The logical thread index sequence is defined from the start, limit, step parameters by using a counter
initialized with start and increased with step increments until it reaches limit. limit is excluded from the
sequence.

In the implementations we have encountered, no further control is provided to programs
over the distribution of logical threads. The index space is spread evenly over all selected
cores. On each core, thread contexts “grab” logical thread indexes on a first-come, first-served
basis until the local index pool is exhausted. Again, we are aware of ongoing discussions
to provide more control to programs to facilitate load balancing, a topic which we revisit
in chapter 13. The interfaces available to programs to control logical distribution should
thus be considered an implementation-dependent design choice, orthogonal to the general
concepts of hardware microthreading.

In each logical thread created, the first synchronizer is pre-populated by the TMU with
the value of the logical index.

4.3.3 Mapping of threads to synchronizers

As explained in section 3.3.3, the proposed architecture uses a dynamic mapping between
operand addresses in instructions and the synchronization space. How many synchronizers
are visible to each thread, and which synchronizers are visible, are both configurable prop-
erties of the thread context, fed into the pipeline for reading instruction inputs when each
instruction is scheduled.

4.3.3.1 Interface design requirements

The question then comes how to design an interface to configure this mapping. Here two◯
forces oppose: on the one hand, maximum flexibility for software would mandate the oppor-
tunity for arbitrary mappings; on the other hand, the complexity of the mapping parameters
impacts logic and energy costs in the hardware implementation.

Any trade-off when designing an interface must consider the following:

• for the design to be truly general-purpose, the opportunity must be given to programs
to specify at least two private (non-shared) synchronizers per thread. This is the
theoretical minimum necessary to carry out arithmetic and recursion within a thread;

• any configuration that shares synchronizers between threads should establish clear
conditions for the eventual release of the synchronizers, lest their management becomes
a source of tremendous complexity in compilers;

• a key feature of the design is the short latency bulk creation of logical threads over
thread contexts. Any design which requires the hardware to modify the mapping of
synchronizers between logical threads, or maintain heterogeneous mapping information
across thread contexts, will impact the latency of thread creation.

Another aspect is the selection of where the configuration is specified. When considering
only performance and implementation costs, the cheapest and most efficient choice is to
let the thread that issues a bulk creation provide the mapping parameters explicitly. Yet
this choice would be shortsighted. From a programmability perspective, a clear advantage
of the architecture is the ability to compose separately written thread programs via bulk

68 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

physical synchronizer store

visible window
in thread 2

"globals" "globals""locals" "locals"

visible window
in thread 1

Figure 4.1: Example window mapping for two sibling threads with global and local synchro-
nizers.

creation. The knowledge of how many synchronizers are visible, and whether and how they
are shared between threads, is needed to assemble instruction codes. It thus belongs with the
code generator for the threads being created, not the threads doing the creation. Therefore,
an implementation should associate this configuration information with the thread programs
that are the target of bulk creation somehow.

4.3.3.2 Common semantics

We could find the following consensus throughout implementations:◯

• The configuration information immediately precedes the first instruction of a thread
program. This answers the argument above, and provides good locality of access to
the creation process.

• Thread programs can specify a number of private synchronizers. This answers the
generality argument above. The fixed number is then allocated for each participating
thread context and is reused by all successive logical threads running on these contexts.
These synchronizers are dubbed “ local ” in the remainder of our dissertation.

• Thread programs can specify a number of synchronizers to become visible from all
threads. This is meant to provide common data to all threads. That fixed number of
synchronizers is mapped onto the visible window of all participating thread contexts
on that core. These synchronizers are henceforth dubbed “globals”; they are “global”
to all logical threads created from a single bulk creation. We also call them “global
dataflow channels” when they are used strictly for broadcasting.

An example is given in fig. 4.1.

4.3.3.3 Heterogeneous sharing patterns

Besides the “global” pattern introduced above, prior work has explored other forms of syn-◯
chronizer sharing between threads. The implementations we have used have proposed the
following features, in various combinations:

“shared” synchronizers between adjacent thread contexts.
With this feature, thread programs can specify a number of extra synchronizers to
share between neighbouring contexts during bulk creation. This creates the overlap
pattern illustrated in fig. 4.2. This feature is coordinated by the TMU so that logical
thread indexes are distributed accordingly, and a point-to-point communication chain

4.3. SEMANTICS 69

Side note 4.2: Purpose and motivation of “shared” synchronizers.
This feature was originally proposed to explore whether bulk created microthreads are a suitable alternative
to dependent sequential loops, when the loop-carried dependency has stride 1. We revisit this in section 13.8.

physical synchronizer store

visible window

in thread 2

"locals"

visible window

in thread 1

"locals" "locals"

visible window

in thread 3

"shareds" "shareds" "shareds" "shareds""shareds" "shareds"

Figure 4.2: Example window mapping for three sibling threads with local and shared syn-
chronizers.

is created in the logical thread order. The mapping is heterogeneous because the
“border” thread contexts do not necessarily share synchronizers (cf. below).
When this pattern is used only to express a forward-only dependency chain, we call
the synchronizers “shared dataflow channels.” When necessary, from the perspective
of a given thread we distinguish further between “D” synchronizers which are shared
with the preceding context, and “S” synchronizers shared with the succeeding context.

“hanging” vs. “separated” global synchronizers.
In the “separated” variant, the global synchronizers of new threads are freshly allocated
from the synchronizing storage and initialized to the “empty” state upon bulk creation,
on each participating core. A dedicated NoC message is then available to programs to
broadcast a value to the participating cores explicitly.
In the “hanging” variant, if the core where the thread issuing a bulk creation is also a
target of the creation, then on that core the global synchronizers of new threads are
not freshly allocated; instead, the window of the new threads is configured to map to
some existing private synchronizers of the thread that issued the bulk creation. Here,
the interface allows a creating thread to indicate which of its local synchronizers to
use as a base offset for the created windows.
Then, if there are more cores participating, fresh synchronizers are allocated on the
remaining cores. The values stored in the synchronizers on the first core are automat-
ically broadcasted to the other cores during bulk creation.
The “hanging” variant results in higher utilization of the synchronizing store on the
first core. It was historically the first implemented. We can see it was primarily
designed for single-core systems and creates a strong resource dependency between
the creating thread and the created threads. The “separated” variant is more flexible
and homogeneous when multiple cores are involved.
We illustrate the difference between “hanging” globals and the “separated” alternative
in fig. 4.3.

“hanging” vs. “separated” shared synchronizers.
As with “separated” globals above, with “separated” shareds the shared synchronizers
of new threads are freshly allocated and initialized to “empty.” The “leftmost” synchro-
nizers in the first thread context may then be subsequently written asynchronously by
the issuing thread using a dedicated NoC message.

70 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

physical synchronizer store

visible window
in created thread

"globals""locals" "locals"

visible window
in creating thread

(a) Mapping of “hanging” globals. The local syn-
chronizers of the creating thread are shared with
the created threads.

physical synchronizer store

visible window
in created thread

"globals""locals" "locals"

visible window
in creating thread

(b) Mapping of “separated” globals. The created
threads uses independent registers.

Figure 4.3: Alternatives for mapping global synchronizers.

physical synchronizer store

visible window
in created thread

"shareds""locals" "locals"

visible window
in creating thread

visible window
in created thread

"shareds" "locals""shareds" "shareds"

(a) Mapping of “hanging” shareds. The local synchronizers of the creating
thread are shared with the created threads.

physical synchronizer store

visible window
in created thread

"shareds""locals" "locals"

visible window
in creating thread

visible window
in created thread

"shareds" "locals""shareds" "shareds"

(b) Mapping of “separated” shareds. The created threads uses independent
registers.

Figure 4.4: Alternatives for mapping shared synchronizers.

With “hanging” shareds, as with “hanging globals” above, a special case exists if the
core where a bulk creation is issued from is also participating. In this case the shared
synchronizers of the border contexts are not freshly allocated from the synchronizing
storage; instead, their visible windows are configured to map to some existing private
synchronizers of the issuing thread.
As above, the “hanging” arrangement was the first designed, with single-core execution
in mind. We illustrate the difference between “hanging” shareds and the “separated”
alternative in fig. 4.4.

4.3.3.4 Layout of the visible window

Once a program has determined which synchronizers are visible, a choice exists of where in◯
the visible window they should be mapped. For example, if a thread program configures
e.g. 4 local synchronizers and 7 globals, it is possible to map offsets 0 to 3 to the locals, and
offsets 4 to 10 to the globals. It is also possible to map offsets 0 to 6 to the globals, and
offsets 7 to 10 to the locals.

4.4. OUT OF BAND CONTROL BITS 71

We can identify this mapping order, using a string of the form “X-Y-Z...”, where X, Y,
Z... indicate the type of synchronizer mapped and the order in the sequence indicates the
order of mapping in the visible window. For example, some early implementations used
the order G-D-L-S, meaning that global synchronizers were mapped first (if any), followed
by the synchronizers shared with the previous context, followed by the local synchronizers,
followed by the synchronizers shared with the next context.

From the hardware designer’s perspective, this choice seems neutral. However, here we◻
discovered an extra requirement from the programmability perspective. Indeed, considering
a common software service that uses only local synchronizers (say, a routine to allocate heap
memory), it proves useful to be able to reuse the same code for this service from multiple
thread contexts with different numbers of “global” and “shared” synchronizers. However, the
address of synchronizers are statically encoded in the instruction codes; this implies that the
mapping of local synchronizers must be identical regardless of the number of other synchro-
nizer types. To satisfy this, we have required that local synchronizers are always mapped
first in the visible windows of threads. Following our requirement the implementations have
been subsequently aligned to the order L-G-S-D.

4.4 Out of band control bits

Introduced in section 3.2.1, the instruction control bits indicate to the fetch unit when to◯
switch threads and when to terminate execution of a thread. These bits must be defined for
every instruction processed through the pipeline; there are three possible design directions
to program them.

The direction least intrusive for existing software, that is, able to preserve an existing
code layout from a pre-existing ISA, is also the most expensive in hardware: maintain two
PCs on the fetch unit, where one refers to code and the other to the control bits in a separate
area in memory. In this approach, the I-cache is shadowed by a cache for control bits, or
“C-cache.” Thread creation events should specify both the initial PC for instruction and
for control bits. Alternatively, the TMU can read the control bit PC by looking up thread
metadata at a fixed offset from the initial instruction PC. The fetch unit must further
place threads on the waiting list on either an I-cache miss, or a C-cache miss. The extra
complexity of this approach comes from the synchronization of waiting threads: upon I-
cache refills, a thread can only migrate from the “waiting” state to “active” if the C-cache
hits, and vice-versa.

The most contrasting approach is to make the control bits part of the machine instruction
encoding, for example using two leading bits in the instruction format. With variably sized
instruction words, an existing ISA can be extended this way, however with any fixed-width
ISA (such as found in RISC designs) this approach requires to redesign the ISA because
some existing instructions may have no unused bits left. In the latter case, this approach is
also the most intrusive as it prevents reusing existing assembly code and compilers as-is.

The implementations we have encountered opt instead for an intermediate approach:
interleave control bits and machine instructions. In this approach, each group of N instruc-
tions is immediately preceded by 2N control bits. To ensure that the fetch unit can always
read the control bits, these must be present in the same I-cache line as the controlled in-
structions. This in turn constrains the minimum I-cache line size. With 32-bit instruction
formats, the “sweet spot” which incurs no wastage of space in I-lines while preserving a size
power of two lies at N = 15, with a minimum I-cache line size of 64 bytes. We detail the
optimal parameters in Appendix B.

72 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

Side note 4.3: Thread switching not specified by control bits.
Besides where specified by control bits, thread switches are also incurred automatically for instructions
laying on the boundary of I-cache lines. This avoids missing the I-cache during fetch (side note 3.3), but also
helps guarantee fairness of scheduling between active threads. Switches are also incurred upon branches for
fairness. Yet, for efficiency it is recommended to still place a “switch” annotation on the branch instruction,
as this will ensure the next pipeline slot is filled by an instruction from another thread and avoids a one
cycle pipeline bubble if the branch is taken.

Side note 4.4: Switching and thread termination as instructions.
Another approach may consider using explicit instructions for thread switching and termination. An in-
struction can signal a control event prior to the instruction that immediately succeeds it. This requires
embedding the few gates necessary to decode the instruction within the fetch stage itself. Alternatively,
an instruction can signal the event for the end of the next cycle. In this case, another instruction that
immediately follows would still be executed before the event is effected.
In either case, this solution incurs a pipeline bubble at every control event: the instruction occupies an idle
cycle that does not contribute to useful computations. It is thus only interesting if switching and thread
termination are uncommon. This solution is thus undesirable with fine-grained interleaving, e.g. where
threads replace inner loop bodies and where memory loads incur switching, such as with the proposed
design.

To program this latter approach, the assembler program must emit a control word at
regular intervals between instructions. This is covered below in section 4.8.

4.5 Interactions with a substrate ISA

The proposed architecture concepts can be applied either to new RISC cores with a dedicated
ISA, or extend existing RISC cores, and thus to pre-existing ISAs. In the latter case, the
ISA is a substrate upon which the extensions are built. When working with a pre-existing
ISA, its semantics interact with the proposed micro-architecture. We list the most notable
possible interactions below.

4.5.1 Delayed branches

Delayed branches, as found in the MIPS, SPARC and OpenRISC2 ISAs, have been designed◯
for in-order, single-threaded pipelines to reduce the cost of control hazards: the instruction(s)
immediately succeeding a branch execute(s) regardless of whether the branch is taken; the
corresponding positions in the instruction stream are called delay slots. With “branch and
link” instructions, where the PC of the first instruction after the branch is saved to another
register, the first address after the delay slot(s) is used.

When an architecture using delay slots evolves to use out-of-order execution, e.g. via the
introduction of superscalar execution or pipeline multithreading, the “next instruction” in
instruction stream order may not immediately succeed the branch in the pipeline anymore,
and extra logic must be introduced to ensure that this instruction completes even when the
branch is taken. With hardware multithreading, this implies maintaining a separate “next
PC” register for every thread.

2http://opencores.org/or1k

http://opencores.org/or1k

4.5. INTERACTIONS WITH A SUBSTRATE ISA 73

4.5.2 Predication

Predication, as found in the ARM and IA-64 ISAs, is another feature designed to reduce the◯
cost of control hazards: each instruction is predicated on shared condition codes updated
by special instructions.

When an architecture using predication evolves to use out-of-order execution, extra logic
must be introduced to ensure that the ordering of tests to the condition codes follow the
ordering of updates. With hardware multithreading, this further implies that separate
condition codes must be maintained for each thread.

4.5.3 Register classes

Some ISAs rely on separate register classes for the operands and targets of certain instruc-◯
tions. Most processor designs use different register classes for integer and floating-point
instructions; then ARM also has a separate class for “return addresses,” used implicitly by
branch and link instructions, and SPARC has “status registers,” including the Y register
used as implicit operand for multiplies and divides.

With hardware multithreading, separate instances of these registers must be available in
each thread. Moreover, if these registers can become the target of long-latency operations,
such as the Y register in SPARC, the ordering of dependent instructions cannot be controlled
by the dataflow scheduling from section 3.2.1 unless these registers are also equipped with
dataflow state bits.

4.5.4 Multiple register windows per thread

We have outlined the role of sliding register windows in section 3.3.3. More generally, some◯
ISAs define multiple register windows per thread and conditions to “switch” the instruction
stream from one to another. For example, ARM defines that a separate register window is
used upon traps, syscalls and interrupts.

With the introduction of hardware multithreading, different instances of the register
windows must be available to each thread to avoid saving and restoring the registers to and
from memory during context switches. The number of windows per thread does not change
as the desired number of hardware threads increases, and becomes the growth factor for the
register file. However, mere duplication would be wasteful, as only one window is active per
instruction and per thread. Here two optimizations are possible.

When the ISA specifies that extra register windows are used only for asynchronous events,
such as in ARM, it is possible to serialize all the asynchronous events from all threads over
a smaller set of registers. In this scenario, if a trap handler is ongoing for one thread, a
trap from another thread would suspend until the trap register window becomes available.
While this approach may suggest reduced parallelism, it is quite appropriate for trap and
syscall entry points which usually require atomic access to the core’s resources (e.g. to fetch
exception statuses).

If the ISA defines explicit instructions to switch register windows, it is possible to replace
these instructions by explicit loads and stores to exchange the registers to memory. This
can be done either statically by substitution in a compiler (as we did, cf. Appendix H.9),
or dynamically by a dedicated process in hardware. This trades the complexity of a larger
register file for overhead in switching windows within threads, which can be tolerated using
dataflow scheduling (section 3.2.2).

74 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

ISA MIPS SPARC Alpha ARM PowerPC OpenRISC
Delay slots yes yes no no no yes
Predication no no no yes no no
Register classes 2 3 2 3 2-6 2
Status register as
implicit operand

no yes no yes yes yes

Register windows no yes (8+) no yes (6) no no
Max. operands
per instruction
(input/output)

2/1 4/2† 2/1 3/2‡ 2/1 2/1

† std has 4 inputs and 1 output; ldd has 2 inputs and 2 outputs.
‡ dual multiplies have 3 inputs; long multiplies have 2 outputs.

Table 4.1: Features of existing general-purpose RISC ISAs.

4.5.5 Atomic transactions

With RISC-style split-phase atomic transactions, for example the Load-link, Store-conditional◯
(LL/SC) instruction pairs found in MIPS, PowerPC, Alpha and ARM, the semantics can be
kept unchanged when the core is extended with multithreading, with no extra complexity.
However, the rate of transaction rollbacks may increase significantly if the working set of all
local threads does not fit in the L1 cache.

In contrast, if the ISA features single instruction atomics, in particular Compare-and-
Swap (CAS) or atomic fetch-and-add found in most other architectures than the four already
named, the memory interface must be extended with a dedicated asynchronous FU for
atomics. Indeed, single-instruction atomics require locking the L1 line for the duration
of the operation, and without an asynchronous FU, any subsequent load would cause the
pipeline to stall until the CAS instruction is resolved.

4.5.6 Summary of the ISA interactions

This section has outlined the interactions between features of the substrate ISA and the
introduction of hardware microthreading. Of common pre-existing general-purpose ISAs
(table 4.1), the Alpha ISA is the one that requires the least added complexity when intro-
ducing microthreading. In our research, we have used implementations derived from both
the Alpha and SPARC substrate ISAs:

• The original Alpha ISA uses neither delay slots, nor predication, nor sliding register
windows, and uses only two symmetric register classes for integer and floating-point
instructions, with no implicit operands in instructions and only one window per thread.
It does not define CAS instructions but does feature LL/SC.

• The original SPARC ISA uses delay slots and sliding register windows, but no pred-
ication. It has three register classes, with implicit operands in integer multiply and
divide (the Y register). It also defines CAS instructions, and 8 sliding windows per
thread.

4.6. FAULTS AND UNDEFINED BEHAVIOR 75

4.6 Faults and undefined behavior

To increase understanding of the proposed interface, we found it useful to explore the “neg-◯
ative space” of the semantics. That is, provide information about situations that “should
not occur” but still may occur due to programming errors, malicious code, etc. From the
hardware interface perspective, we can specify two types of reactions upon an erroneous or
unplanned situation in hardware.

If we specify that a situation constitutes a fault, we mean that it constitutes an error
recognized by the implementation, and where execution is guaranteed to not progress past
the fault. For example, after a fault occurs, either the entire system stops execution, or a
fault handler is activated to address the situation and decide an alternate behavior.

If we specify undefined behavior, we mean a situation where the behavior of an imple-
mentation is left undefined, that is, an implementation may or may not test for the situation
and execution may or may not progress past the situation. The characteristic of undefined
behavior is absence of knowledge about the behavior, in particular that no further knowledge
about the state of the system can be derived from past knowledge after the situation occurs.

We detail the situations we have found most relevant to programmability and validation
in the following sections.

4.6.1 Invalid synchronizer accesses

4.6.1.1 Unmapped synchronizers

If an instruction uses a synchronizer address that is not mapped in the visible window
(e.g. address “8” when there are only 4 synchronizers mapped), two behaviors are possible:

• either an implementation guarantees that such situations will always read the value
zero as if it was a valid literal operand, or

• the situation constitutes a fault.

We found implementations exhibiting both these behaviors.

4.6.1.2 Stale states and values in local synchronizers

Upon bulk creation, “local” synchronizers are freshly allocated for each thread context (sec-◯
tion 4.3.3.2). Yet an implementation may choose to not reset the dataflow state after
allocation. If that is the case, the synchronizer stays in the state it was from a prior use
by another group of threads. It may contain a value, or it may be in the “empty” state.
Therefore, in a new thread, if an instruction reads from a local synchronizer before it has
been written to by another instruction from the same thread, two behaviors are possible:

• either the instruction reads from the previous state unchanged, and may read a stale
value or deadlocks the thread if the operand was in the “empty” state; or

• the implementation guarantees that the value zero is read from any “empty” local
synchronizers.

This aspect is crucially important when generating code. Indeed, if the thread program
transfers control to a subroutine defined separately, and that subroutine subsequently spills
some callee-save synchronizers to memory, this may cause the thread to suspend (and dead-
lock) if the synchronizers were still in the “empty” state. To avoid this situation, a code

76 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

generation would thus need to explicitly clear all local synchronizers to a “full” state prior
to calling any subroutine. With the alternate implementation that reads zero from “empty”
local synchronizers, this initialization is not necessary.

4.6.1.3 Writing to a non-full synchronizer

If an instruction is issued with an output operand containing a future on the result of a◯
previous asynchronous operation from the same thread (e.g. the target of a prior memory
load, or the future of a family termination due to bulk synchronization), the following
behaviors are possible:

• undefined behavior: the hardware may let the instruction execute and overwrite the
continuation of the pending result with a new value; when this happens, any threads
that were waiting on that result will never be rescheduled, and a fault may or may not
occur when the operation completes and the asynchronous response handler does not
find a continuation in the synchronizer; or

• the instruction suspends until the target becomes full and can be written to.

Undefined behavior can be avoided within procedure bodies when compiling programs
with clear use-def relationships (as is the case in C), but is more insidious between procedure
calls. Indeed, when transferring control between subroutines, a subroutine may spill some
callee-save synchronizers to memory, and restore them from memory before returning con-
trol. This means that these subroutines end by issuing some memory loads but not waiting
on the result. When the caller resumes, it may then choose to not reuse the previous value
of the callee-save synchronizer, and instead write a new result to it. Without support from
the hardware (second alternative above), a code generator must ensure that all memory
loads at the end of a procedure are eventually waited upon, by introducing dummy “drain”
instructions.

4.6.2 Invalid bulk creation parameters

An invalid program counter during bulk creation (e.g. to non-readable memory) triggers◯
the same behavior as a control flow branch to an invalid address, whatever this behavior is
specified to be in the substrate ISA.

Concurrency management faults are then signalled in the following situations:

• the control word (section 4.4) contains invalid bit values;
• a concurrency management operation is provided an input that is not of the right type,
e.g. the parameter to a create operation is not the identifier to a bulk creation context;

• the order of operations in the protocol is violated, e.g. the bulk creation request is
sent twice on the same bulk creation context.

A more insidious situation comes from data-dependent behavior in bulk creation. In
particular, if an invalid index range is provided, for example with the start value greater
than the limit, then this yields undefined behavior in all the implementations we have
encountered. Some let the bulk creation process start creating logical threads and never
terminate, some others terminate bulk creation when the largest index value is reached.
These ought to be signalled as faults, yet we should recognize that detecting the condition
would add extra steps in the critical path of bulk creation, increasing its latency.

4.7. SPECIFIC IMPLEMENTATIONS AND THEIR INTERFACES 77

4.6.3 Deadlock detection and handling

With the proposed primitives, deadlocks should only occur as a result of thread programs◯
using the primitives explicitly in an order that creates a deadlock situation, or from the
exhaustion of available concurrency resources. For example, a thread may create another
logical thread which reads from an input dataflow channel, and then wait on termination of
that logical thread without providing a source value on the channel. While these situations
are avoidable “by contract” with a programmer or a higher-level code generator, they may
nonetheless occur in a running system.

The result is one or more thread contexts that are suspended and never resume execution.
The deadlock can then propagate (other threads waiting on termination recursively) or stay
isolated. In either case the allocated thread contexts are never released and cannot be
reused. This constitute leakage of hardware resources.

The implementations we have encountered do not provision any support for detecting
and handling resource leakage due to deadlocks when it occurs. At best, a system-level
deadlock detection may be available, which signals to an external operator that the entire
system is idle yet there are some threads suspended.

In [JPvT08], the authors propose that resources (core clusters, communication channels)
are leased to program components for contractual amounts of time or maximum memory
capacities. If the contract is violated (e.g. due to a timeout or quota excess), the resource
is forcibly reclaimed by the system. The existence of such mechanisms would provide a way
to address the deadlock situations mentioned above; however they are not (yet) available in
the implementations we worked with.

4.7 Specific implementations and their interfaces

During our work we have been exposed to multiple implementations with different design◯
choices for the various aspects covered above. Some of these implementations are listed in
table 4.2. We can classify these implementations mostly into six categories along two axes:

1st, 2nd and 3rd generation ISAs. The first generation corresponds to the character-
istics captured in the UTLEON3 implementation on FPGA, eventually published
in [DKKS10, DKK+12]. The second generation introduces detached creation (cf. sec-
tion 4.3.1.2), removes “hanging” mappings of synchronizers (cf. section 4.3.3.3) and
thus makes new threads fully independent from creating threads; this simplifies code
generation as we discuss later in sections 6.3.4 and 6.3.5. The third generation codifies
placement across arbitrary cluster of cores, we discuss this further in chapter 11.

SPARCv8 (32-bit) vs. Alpha (64-bit). The SPARC-based implementations extend the
SPARCv8 ISA with microthreading, but do not include support for traps, delay slots,
sliding register windows, dataflow scheduling on the status registers (including Y), nor
CAS. Sliding windows are replaced by explicit spills and restores (cf. Appendix H.9).
The Alpha-based implementations extend the Alpha 21264 ISA with microthreading,
but do not include support for traps, PALcodes nor LL/SC.

We illustrate these six major implementations in fig. 4.5. The figure also shows how the
assembler and linker have evolved with the ISA generations.

78 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

Name Substrate
ISA

Allocation
failure
modes

Creation
style

Placement style Mapping
style for
“globals”

Mapping
style for
“shareds”

Window
layout

MGSim v1
200807

Alpha suspend
only

fused local, explicit
(local cluster)

hanging hanging G-S-L-D

MGSim v1
200902

Alpha,
SPARCv8

suspend
only

fused local, explicit
(local cluster)

hanging hanging G-S-L-D

MGSim v1
200904

Alpha,
SPARCv8

suspend
only

fused inherit, local,
explicit (named
static clusters)

hanging hanging G-S-L-D

MGSim v1
200909

Alpha,
SPARCv8

suspend,
soft fail

fused inherit, local,
explicit (named
static clusters)

hanging hanging G-S-L-D

MGSim v2
201004

Alpha,
SPARCv8

suspend,
soft fail

detached inherit, local,
explicit (named
static clusters)

separated separated G-S-L-D

MGSim v2
201005

Alpha,
SPARCv8

suspend,
soft fail

detached inherit, local,
explicit (named
static clusters)

separated separated L-G-S-D

MGSim v3
201103

Alpha,
SPARCv8

suspend,
soft fail

detached inherit, local,
explicit (arbitrary
clusters)

separated separated L-G-S-D

UTLEON3
<201003

SPARCv8 suspend
only

fused inherit only hanging hanging G-S-L-D

UTLEON3
201003

SPARCv8 soft fail
only

fused inherit only hanging hanging G-S-L-D

UTLEON3
201011

SPARCv8 soft fail
only

fused inherit only hanging hanging L-G-S-D

utc-ptl N/A trapping detached local, explicit
(local cluster)

hanging hanging N/A

dutc-ptl N/A trapping detached local, explicit
(nodes on
network)

hanging hanging N/A

hlsim
<201107

N/A trapping detached local, explicit
(local cluster)

hanging hanging N/A

hlsim
201107

N/A suspend,
soft fail

detached inherit, local,
explicit (arbitrary
clusters)

separated separated N/A

Table 4.2: Characteristics of various implementations.

mtaxpasm

mtsim

binutils
mtalpha v1

MGSim v1
MT-Alpha

UTLEON3

MGSim v2
MT-Alpha

MGSim v1
MT-SPARC

MGSim v2
MT-SPARC

MGSim v3
MT-Alpha

MGSim v3
MT-SPARC

binutils
mtsparc v1

binutils
mtalpha v2

binutils
mtalpha v3

binutils
mtsparc v2

binutils
mtsparc v3

Alpha-based
Microthreaded

64-bit ISAs

SPARC-based
Microthreaded

32-bit ISAs

time~2008 ~2011

"1st gen" mostly single-core ISA, synchronizers shared between parent thread and child family

"2nd gen" multi-core ISA; static clusters of cores; separate synchronizers between parent thread and child family

"3rd gen" multi-core ISA; configurable clusters of cores; multiple allocation policies

Start of
Apple-CORE

Figure 4.5: History of the hardware platform implementations.

4.8. ASSEMBLER AND ASSEMBLY LANGUAGE 79

4.8 Assembler and assembly language

The assembler program translates textual machine code into binary code suitable for execu-
tion. Any given assembler, and more importantly its assembly language, are thus dependent
on the specific choice of instruction encoding and the design choices described earlier.

During our work we have been exposed to multiple assemblers, developed outside of our
own research. They were all derived from the GNU assemblers for the GNU/Linux/Alpha
(alpha-linux-gnu) and GNU/Linux/SPARC (sparc-linux-gnu) targets.

4.8.1 Common features

The following features exist across all implementations:◯

• the new mnemonics “swch” and “end” are recognized. The assembler computes the
control bits (section 4.4) by associating the value “switch during fetch” to instructions
immediately followed by swch, and the value “switch in fetch and end thread” to
instructions immediately followed by end.

• the new directive “.registers” is recognized. This should be used at the start of
a thread program and produces the synchronizer mapping configuration discussed in
section 4.3.3. The numerical arguments specify the number of local synchronizers
per thread, the number of “shared” synchronizers shared between adjacent contexts,
and the number of “global” synchronizers shared by all contexts. There are different
arguments for the different register classes, for example integer and FP registers on
Alpha.

• the format of register names is extended to provide relatively numbered aliases to the
different types of synchronizers in the visible window. For example, the name “$l3” on
the Alpha on an implementation with a G-S-L-D layout (section 4.3.3.4) is translated
by the assembler to the operand offset G + S + 3, where G and S are the number of
“global” and “shared” synchronizers declared earlier with “.registers”.
The formats $lN , $gN , $sN , $dN , $lfN , $gfN , $sfN , $dfN (Alpha), %tlN , %tgN ,
%tsN , %tdN , %tlfN , %tgfN , %tsfN , %tdfN (SPARC) are recognized: “l” stands
for “local”; “g” for “global”, and “s” and “d” for the “S” and “D” parts of “shared”
synchronizer mappings (section 4.3.3.3). The SPARC variant uses a “%t” prefix for
aliases to avoid ambiguity with the native SPARC name “%g0.”

4.8.2 Extra instructions

The instruction mnemonics available depend on the choice of interface for bulk creation and◯
synchronization (section 4.3.1). In all implementations we can find the following:

• “allocate,” which expands to instructions that allocate a bulk creation context. There
are different forms depending on the supported failure modes (section 4.3.1.1) and
placement options (section 4.3.2.1).

• “setstart,” “setlimit,” “setstep,” “setblock.” These expands to instruction that
configure the parameters of bulk creation (sections 4.3.2.2 and 4.3.2.3).

Further instructions depend on:

• the creation style, discussed in section 4.3.1.2:

80 CHAPTER 4. MACHINE MODEL & HARDWARE INTERFACE

– interfaces with fused creation provide a combined “create.” (The Alpha ISA
further distinguishes between “cred” and “crei” for immediate/direct and rela-
tive/indirect PCs specifications).

– interfaces with detached creation distinguish between “create” for bulk creation,
“sync” to request bulk synchronization, and “release” to request de-allocation
of the resources.

• whether synchronizers are “hanging,” discussed in section 4.3.3.3:

– interfaces with “hanging” synchronizers must specify at which offset of the visible
window of the issuing thread the sharing of hanging synchronizers should start.
Here there are two variants; either there is no interface and the hanging always
starts at the first “local” synchronizer (e.g. on UTLEON3); or an instruction
“setregs” exists to explicitly configure the offset (e.g. on MGSim v1).

– for interfaces without “hanging” synchronizers, explicit “put” and “get” instruc-
tions are available to communicate values between an issuing thread and the
created threads.

We have constructed a detailed specification of the exact formats and encodings of the◻
various instructions on the Alpha and SPARC ISA variants of “MGSim v3” and “UTLEON3
201111,” reproduced in Appendix D.

4.8.3 Program images

The implementations use either flat memory images or ELF [Com95] images to load program◯
code and data into memory. The GNU linker has been modified prior to our work to produce
these from object code created by the assemblers introduced above.

Summary

The machine interface of the proposed architecture subsumes an existing ISA by substituting◯◻
general-purpose registers with dataflow synchronizers. In addition to this, new primitives
and extra semantics are added to the existing ISA to control the Thread Management
Unit (TMU) in hardware and thus provide control over concurrency management to pro-
grams. To illustrate, we provide in Appendix C an example concrete program for a specific
implementation.
Due to a diversity of possible implementation choices, the specific machine interfaces of◯
given implementations may differ slightly in their semantics. For example a fundamental
distinction, visible to programs, exists between “fused” and “detached” bulk creation. We
have highlighted the different areas where implementation choices impact the machine in-
terface, and characterized the available implementations by their specific choices in these
areas.

Part II

Foreground contribution
—Demonstrating and documenting the general-purpose

programmability of a new chip

Chapter 5

System perspective
—Identifying audiences, their expectations and opportunities

Give a man a fish and you feed
him for a day. Teach a man to
fish and you feed him for a
lifetime. Unless he doesn’t like
sushi–then you also have to teach
him to cook.

Auren Hoffman, cited in [Dac06]

Abstract

The responsibility of the hardware architect extends beyond the design of hard-
ware components on a processor chip, to include meeting the platform expectations
of software ecosystems. The reward for entering a dialogue with the audience is the
opportunity to gain early feedback upon the innovation. In this chapter, we identify
candidate ecosystems for the proposed design from part I, the parties involved in the
dialogue and their expectations. This identification allows us to sketch a technical path,
which we will then follow throughout part II.

Contents
5.1 Introduction . 84
5.2 Computing ecosystems . 85
5.3 Proposed dialogue scenario and opportunities . 87
5.4 Case study: hardware microthreading . 88
5.5 Platform definition . 92
Summary . 95

83

84 CHAPTER 5. SYSTEM PERSPECTIVE

5.1 Introduction

Ever since the advent of hardware specification languages like Verilog or VHDL, innova-
tors in hardware architectures have been able to separate the design of new parameterized
components from the selection of actual parameter values.

This raises the question of how to evaluate a new design. In principle, it is possible to look
at a parameterized specification in isolation and analyse the impact of design choices locally.
For example, the authors of [BJM96] study analytically the optimal number of threads that
must be active simultaneously in a microthreaded core to tolerate memory latencies; this
number of threads is then itself parameterized by the actual memory latencies in a concrete
system. However, local study of a new component is only possible by making assumptions
about the context where the component will be used. For example, simulating a new branch
predictor using precomputed execution traces assumes that the sequence of instructions on a
processor without the branch predictor is the same as when the branch predictor is available.
In general, simulations of a new component in isolation are only valid if the models of the
component’s environment, which serve as input to the simulation, take into account the
impact of the innovation on the entire system.

The question of evaluation thus becomes non-trivial when a new component functionally
impacts multiple levels of a computing system. Impact on function implies that the structure
of software may become different, and therefore that models of system behavior constructed
without the component become inaccurate as input to predict the behavior of a system
equipped with the new component. In this case, the construction of a system, or at least a
full system simulation, becomes unavoidable to evaluate the innovation.

This in turn raises the question of how much of a system one should construct to expose
and evaluate the innovation. Processor chip designers typically consider that innovation in
processor components is fully realized once the processor chip is fully configured, either on
silicon or in simulations. Yet the impact of an innovation at the level of processors can
only be studied in the context of software workloads. These workloads in turn are highly
dependent on the environment of the processor, including memory, of course, but also:

• the logic that define I/O interfaces, e.g. an Ethernet adapter, which defines the pro-
tocol used by software to react to external asynchronous events;

• the first level code generation tools that provide a programming environment suffi-
cient to implement software operating systems, since the operational semantics of the
first level programming languages will constrain those of any higher-level language
implemented on top of them.

There are thus two ways to expose a new component in processors, depending on the
impact of the innovation on the software ecosystem. If existing I/O infrastructure and
abstractions, as well as first level programming interfaces, can be reused without significant
changes, then it becomes possible to argue that the new design can be used as a “drop-in
replacement” in existing systems, i.e. that it “preserves backward compatibility.” It then
becomes possible to use existing software and evaluation methods soundly, at a low cost. In
contrast, if the new design requires changes to any of these aspects, then the party in charge
of the innovation must take the responsibility to either implement the corresponding new I/O
infrastructure or code generation technology, or partner with third-parties to provide them,
before describing how software workloads must be adapted to the new proposed platform.

This is the topic introduced in this chapter, and covered in the rest of part II: we propose
a methodology to support the exposition and realization of an innovation in processor chips,
when the innovation has a potential impact on the system interface to software.

5.2. COMPUTING ECOSYSTEMS 85

In section 5.2, we expose the concept of computing ecosystem and we highlight the inter-
actions between ecosystem actors in the design of computing platforms. Then in section 5.3,
we outline our methodology where the expectations and requirements of existing computing
ecosystems are used as a starting point for integration. Our key idea is conceptual backward
compatibility, i.e. the match of existing expectations in new integrations. This idea stems
from the observation that hardware and software components are nowadays modular, and
that a new platform provider can co-redesign part of the hardware platform and the software
platform to tune it to a new chip design while reusing most components of existing systems.
The benefit of this approach is that any form of partial technology reuse can provide early
feedback on the substance of the innovation. Our methodology involves first selecting a
computing ecosystem, then understanding their socio-technical dynamics, and in particular
identifying the subset of their technology that interfaces software with hardware. Then we
propose to use this understanding to derive integration steps where only this technology
subset is replaced by functionally equivalent hardware and software components. We then
apply this methodology in section 5.4 to the innovation from part I and derive possible
integration steps. We outline in section 5.5 the resulting system platform, which was used
subsequently for software developments.

5.2 Computing ecosystems

In any programming environment, application developers use external services in addition
to language intrinsics. These give access to features outside of the core language semantics.

From the language implementer’s perspective, there is an additional qualitative distinc-
tion between autonomous library services which capture common algorithms or program
patterns as sub-programs or functions expressed only using the language and other library
functions; and system services which requires specific knowledge about the underlying com-
puting system. For example in C the string comparison function strcmp is autonomous,
whereas the malloc heap allocation function is a system service because it either requires
to know about the address space layout of the actual hardware, or requires support from a
virtual memory manager like POSIX’s sbrk or mmap. This distinction is useful because the
definition of autonomous services requires only a dialogue between the application developer
and the language implementer, whereas the definition of system services needs a dialogue
between both these parties and the underlying system’s provider.

Which parties are involved, and how many, between the language implementers and the
hardware provider constitutes a distinguishing feature of a computing ecosystem. For exam-
ple, with the first High Performance Computing (HPC) ecosystems and the early personal
micro-computer markets, there was no intermediate party between the language implementer
and the hardware provider. The latter provided detailed knowledge about the hardware in-
terface to both language implementers and application developers. This situation still exists
with small embedded systems, especially those based on microcontrollers. In contrast, the
IT service provider ecosystems of the early 21st century feature tens of parties involved in
defining abstractions between the hardware platforms and the actual applications visible to
customers.

5.2.1 Dialogue within ecosystems

The main dialogue between an ecosystem’s actors considered here is the user-provider rela-
tionship, illustrated in fig. 5.1.

86 CHAPTER 5. SYSTEM PERSPECTIVE

COMPUTING SYSTEM

User Provider

expectations

knowledge

User
Technology

Provider
Technology

run-time
interactions

➀

➁

➁➂

➃

Figure 5.1: User-provider relationship in a computing ecosystem.

COMPUTING SYSTEM

Platform
provider

Operating
software
provider

Operating
software
provider

Application
provider

Application
components

High-level
Services

Low-level
Services

Hardware
components

➀

➀

➁

➁

➂

➂

➄ ➄ ➄

➃

Figure 5.2: Idealized, non-realistic vision of the “abstraction stack.”

Platform
provider

Operating
system
provider

C compiler
implementor

C library
implementor

Low-level
programmer

C
programmer

(a) User-provider dialogues. The strength of the
arrows represents the amount of knowledge pro-
vided.

COMPUTING SYSTEM

Hardware

OS services

Language & Library
services

Application components

(b) Run-time interactions be-
tween technologies.

Figure 5.3: Subset of actual ecosystem interactions in the IT service industry.

5.3. PROPOSED DIALOGUE SCENARIO AND OPPORTUNITIES 87

In this dialogue, a user party expresses wishes, or expectations, which are answered by
a provider party in the design and implementation of their technology. The provider’s de-
sign is then described to the user, who can subsequently use this knowledge to implement
more technology. A computing system results from an actual composition of the technolo-
gies. Run-time interactions between components are only eventually possible if the dialogue
between the parties was successful.

It may be tempting to describe a computing system as a linear, stacked relationship
between components of increasing levels of abstractions (fig. 5.2). In this idealized vision,
the actors in the ecosystem form a chain where the actor at one level of abstraction plays
the role of user for the actor at the level immediately lower, and provider for the actor at
the level immediately higher.

In reality however, ecosystems are more complex and a strict abstraction stack cannot be
clearly defined. The example in fig. 5.3 demonstrates that some actor pairs are both user and
provider to each other. For example, C compiler and library implementers are thus typically
co-dependents. Moreover, some actors will place expectations and require knowledge from
multiple providers. For example application programmers may place expectations, and
require knowledge from, both the compiler and library implementers.

Despite this diversity, we can recognize in most ecosystems:

• the platform providers who have a privileged role as universal providers, as they do not
require knowledge about the technology of other actors to provide their own technology
(although they may advantageously exploit such knowledge when it is available);

• various operating software providers who do require knowledge about the platform and
whose technology is not directly visible by the eventual external users of the running
computing systems.

5.2.2 The need for a target audience

When pushing innovations from the hardware designer’s perspective, which really is a part
of the platform provider’s perspective, it is thus essential to determine or choose a target
ecosystem, so as to identify which parties are responsible for providing the first-level inter-
face to the platform. Depending on the ecosystem, these first level parties will be either
application-level programming language implementers, operating system providers, platform
virtualization providers, or possibly others, all of whose will have different expectations and
customs that must be acknowledged in the dialogue.

This is the obstacle that creates the HIMCYFIO pitfall introduced in chapter 1: often
innovators resist choosing a target ecosystem, and thus fail to tailor their dialogue to the
specific culture of their first level parties who have direct access to the innovation in the
abstraction stack.

In this chapter, we propose a dialogue scenario to advertise architectural innovations,
and we illustrate this scenario with the case of hardware microthreading introduced in part I.

5.3 Proposed dialogue scenario and opportunities

The integration of architectural innovations involves both gaining the interest of the various
stakeholders and sketching an integration path for them. This must outline which concrete
actions are required to perform the integration and fit the innovation into the ecosystem.

88 CHAPTER 5. SYSTEM PERSPECTIVE

For this, two different perspectives must be adopted simultaneously. The first must look
backwards in time and provide “adequate” support for legacy applications. This must ac-
knowledge the perception of existing user communities, their assumptions and their culture.
What constitutes “adequate” backward compatibility can be negotiated based on contem-
porary expectations: for example, the simple preservation of standard system Application
Programming Interfaces (APIs) instead of full binary compatibility has become acceptable
for commodity computing in the first decade of this century, whereas it was frowned upon
ten years earlier. The second perspective must look forward and define an attractive toolbox
for new applications. This must highlight issues with past customs of the ecosystem and
illustrate new opportunities to gain traction. This is where a new feature can be advertised,
for example hardware support for concurrency management.

This latter perspective is well-understood and usually spontaneously adopted by inno-
vators. However, the first perspective should not be adopted as an afterthought: innovators
who may resist acknowledging the full scope of their audience in the ecosystem may not
recognize that it is their responsibility to sketch the integration path as an extension of
current views.

To sketch an initial integration path, we suggest in a first iteration to mingle with the◻
community and imitate previous integration scenarios from other successful innovators. We
have three motivations for this.

One is that using a known scenario makes it easier for parties to recognize and estimate
the work required to adopt an innovation. For example, porting an existing operating
system to a new hardware platform is a well understood undertaking, whereas designing an
entirely new operating system and then its backward compatibility layer involves high risks
in management and planning.

Another is that reusing an existing scenario allows audiences to easily differentiate the
innovation from its extra integration steps. For example, while porting an operating sys-
tem to a new hardware platform, the new hardware features will be readily recognized by
comparison with the other platforms where the operating system was running previously;
whereas if, to expose a new hardware platform, a new operating system is developed, the
benefits of the former may be occluded by design or engineering defects in the latter.

Our third motivation, perhaps the strongest, is that reusing a known scenario will min-
imize the effort to reach the first interested parties and encourage them to provide early
feedback. This is essential as early feedback may highlight key issues with the innovation
that must be addressed before effort is invested into a larger, long-term integration plan.

5.4 Case study: hardware microthreading

5.4.1 Target ecosystems

We have examined possible ecosystems for the innovation from part I, summarized in ta-
ble 5.1. This table identifies for each ecosystem the parties interacting directly with the
platform provider and evaluates the estimated acceptability of the proposed hardware fea-
tures.

From this analysis we can recognize an interesting target: the community of IT service
providers, more specifically type II and III service providers1 who build upon Free and Open
Source Software (F/OSS).

1As per [RH11]: type I service service providers are those providing IT services to only one client,

5.4. CASE STUDY: HARDWARE MICROTHREADING 89

Ecosystem↓ First level parties in direct
dialogue with the hardware
provider

Preference for
homogeneous,
fungible chip
structure rather than
heterogeneous,
specialized
components

Tolerance of changes
to the machine
interface, forcing
recompilation of
programs

HPC Both performance language
implementers and application
providers

usually increasing

Desktop computing Both application providers
and operating software
providers

yes unusually,
but increasing

Mobile computing System integrators unusually yes
Video game consoles Game designers unusually unusually
Embedded systems Application providers no yes
Type I IT service providers Operating software providers yes unusually
Type II/III IT service providers Operating software providers yes usually

Table 5.1: Possible target ecosystems for the proposed architecture.
The candidate ecosystems are taken from those most likely to benefit from the availability of large amounts of parallelism

on chip. This excludes e.g. domestic appliances.

Type II/III service providers are particularly interesting for two reasons. First, this com-
munity does not typically expect specialized computing platforms, i.e. its members expect
balanced general-purpose platforms that they can specialize differently in software for dif-
ferent customers. This contrasts with type I providers who may consider specializing to the
needs of their unique client. Type II/III providers are thus direct consumers of the “stem
cells” of computing that we recognized in section 1.3; this ecosystem is therefore likely to be
accepting of, or interested in, hardware designs that are not tailored to a specific application.

The second reason is that this ecosystem’s market dynamics do not allow products to
crystallize into aging legacy that must be preserved and maintained over time. This is
because the lifetime of the associated business contracts does not typically exceed the lifetime
of the platforms used. To the contrary, parties in this ecosystem welcome most technology
developments as a positive factor for business differentiation. They are thus accepting
of significant platform developments, e.g. new ISA features that require recompilation of
program code, new filesystem technology that requires data migration, etc. This is useful
since the proposed architecture does not propose to maintain backward binary compatibility
of application code with previous platforms.

The subset of F/OSS-oriented service providers [GA04] is also particularly interesting
for two reasons. The first is that the F/OSS movement is now widely acknowledged as a
driving force for innovation in software ecosystems [Lev84, Web00, LT02, vHvK03, LW03,
LT04, BS06, CHA06, Rie07]. Moreover, in the first decade of this century, F/OSS has also
become the primary source of first level infrastructure for the online IT service industry.
It must thus be acknowledged by hardware architects who want to partake in horizontal
innovation networks [vH07]. The second reason is that F/OSS, by definition, promotes
openness and transparency between the layers of the abstraction stack. This creates an
opportunity, from the hardware architect’s perspective, to receive more feedback on the
promoted innovations from all parties of the ecosystem.

5.4.2 Dual ecosystem

While we were eventually able to recognize the IT service industry as a particularly relevant
candidate ecosystem, this recognition only clearly occurred in hindsight; during our work,

typically within their organization; type II service providers are those providing IT services to multiple
business units within their organization; type III providers cater to multiple external customers.

90 CHAPTER 5. SYSTEM PERSPECTIVE

Platform
provider

C compiler
and run-time
implementor

C benchmark
implementor 2

SAC2C
compiler

implementor

Parallelizing
C compiler

implementor

SAC
benchmark

implementor

C benchmark
implementor 1

(a) Ecosystem actors and user-provider dialogues.

Automatically generated

Automatically generated

BENCHMARKS

C code from
computation

kernels

SAC code

C code with
extra constructs

using
microthreading

Binary
executable
code for the

target
architecture

C code with
extra constructs

using
microthreading

Parallelizing
C compiler

SAC
compiler

Core compiler
Platform

C code with
microthreading

SAC library
code

existing C
code in the
SAC library

Required C
library

support

(b) Interactions between technologies.

Figure 5.4: The Apple-CORE ecosystem and its technology.

our choices were merely intuitively and subjectively motivated by past professional experi-
ence with this ecosystem. Instead, our immediate target was a project consortium named
Apple-CORE, which we depict in fig. 5.4, and which shares design objectives (performance,
efficiency) with the HPC community. In this ecosystem, four academic organizations play
the roles of seven actors, identified as follows:

• a platform provider implementing the proposed architectural features in FPGA and
emulation;

• an operating software provider for a machine interface language, extending C with
primitives to control the new hardware features;

• another operating software provider for the SAC2C compiler, generating C code from
Single-Assignment C (SAC) [GS06];

• another operating software provider for a parallelizing C compiler;

5.4. CASE STUDY: HARDWARE MICROTHREADING 91

• three application providers for: existing benchmarks using plain C, SAC benchmarks,
and hand-coded benchmarks using the proposed C language extensions.

Retrospectively, under the combined influence of both this ecosystem and the IT service
industry identified earlier, our work has targeted a “middle ground” between the two. We
acknowledge this as a shortcoming, because it prevented us from making choices that would
have permitted performance improvements at the expense of portability, as would be ap-
propriate in the HPC community, and choices that would have increased portability of the
eventual platform to a larger diversity of application providers, as would be appropriate in
the IT service industry.

Nevertheless, as we show in part III our choices were eventually successful at gaining
early feedback, as per section 5.3, on the architectural innovation.

5.4.3 Ecosystem actors and their expectations

Our suggestion from section 5.4.1 was to target the ecosystem of IT service providers building
upon F/OSS. In this community, the first level audience from the platform provider’s
perspective is constituted by:

• F/OSS operating system providers (e.g. Solaris, GNU/Linux, BSD);
• F/OSS system-level language implementers (e.g. GNU Compiler Collection, LLVM);
• more recently, the providers of virtualization platforms, either encapsulated (e.g. Java,

.NET) or para-virtualized (e.g. Xen, KVM, VMWare).

The diversity of actors in these categories has historically caused the community to self-
organize around community-based standards that document their provided technology, in
particular:

• codified ISO and IEEE specifications for the C and C++ languages [II11b, II11a] and
the POSIX system interfaces [IEE08, II09];

• informal consensus about commonly supported extensions to these specifications; for
example, the BSD network socket API and the GNU extensions to the C language.

With standards serving as middle ground with any downstream actors in the ecosystem,
innovators cannot simply make deals with particular application providers to implement
their own operating system and exploit their innovation directly; they must instead either
provide one of the existing standard interfaces to their proposed technology, or argue to the
community why the existing standard is inadequate and should be extended.

In the latter case, standardization of new interfaces first requires multiple proof-of-
concept system implementations of the proposed interface by independent actors, then a
proposal for a new standard, then community evaluation of the proposal. For example, this
is the process that enabled the eventual integration of thread management in [II11b] com-
pared to the previous [II99]. This process, while lengthy, promotes peer review and avoids
tight vertical integration between hardware providers and specific application vendors.

In contrast, the lower interface between platform providers and the first level software
actors is not codified and a large diversity of platform designs exists. This is a boon to
hardware innovators, because it creates a tolerance for new platforms, and it pushes existing
F/OSS operating systems to design for portability. This in turn significantly reduces the
effort required to adapt an existing code base to a new hardware design.

92 CHAPTER 5. SYSTEM PERSPECTIVE

To summarize, the audience identified above expects the platform provider to interact
with first level software actors towards providing a first implementation of the standard
interfaces. It also expects the platform provider to simultaneously explain to third parties
how they could exploit the platform on their own to deliver other implementations of the
standard interfaces.

5.4.4 Strategy

In this context, a strategy to advertise the innovation from part I in this ecosystem would
start with defining a hardware platform around the technology, then reuse existing F/OSS
operating software components to provide (some of) the established standard interfaces to
application developers, and then explain how this was done so that third parties could
reproduce and/or extend the work.

We spell out these steps as follows:

1. describe the hardware/software machine interface;
2. define a hardware environment as will be observed by operating software components,

including I/O devices;
3. implement a freestanding C language environment [II11b, 4§6, 5.1.2.1] which can com-

pile autonomous code without external software dependencies;
4. port some operating system components using item 3 to provide hardware access to

software;
5. port some C library components using items 3 and 4 to define a hosted C language

environment [II11b, 4§6, 5.1.2.2];
6. document any unusual/new specific aspect of the platform required by third parties

to reproduce steps 3 to 5;
7. illustrate with example/evaluation programs that exploit items 3 to 5.

The narrative of our dissertation essentially follows this plan. Part I, in particular
chapter 4 covered item 1. We then address item 2 in section 5.5 below. Chapter 6 covers
items 3 to 5. Chapters 7 to 11 address item 6. Item 7 is finally covered in part III.

5.5 Platform definition

To support the implementation steps sketched above, a platform with memories and I/O
devices is needed around the processor chip.

The initial hardware environment implementing the architectural concepts from part I,
available prior to our work, was extended as depicted in figs. 5.5 and 5.6. This equips the
prototype microthreaded chip with an I/O system that can be connected to the necessary
hardware devices, or low-level emulations thereof. More specifically, the FPGA integra-
tion was performed by another research group [DKK+12], and we extended the emulation
environment to mimic the FPGA integration.

5.5.1 Support for I/O and legacy system services

Early on we observed that existing operating system code could not be reused directly with
the proposed microthreaded architecture, even equipped with I/O devices. Indeed, all ex-
isting reusable operating system codes we could find, from embedded to server platforms

5.5. PLATFORM DEFINITION 93

F P G A C I R C U I T B O A R D

F P G A C H I P

Microthreaded
processor

(UTLEON3)

DRAM
interface

DRAM chips

AMBA AHB bus

ROM

(a) Initial FPGA platform.

F P G A C I R C U I T B O A R D

F P G A C H I P

Microthreaded
processor

(UTLEON3)

DRAM
interface

SVGA
interface

UART
interface

DRAM chips
DAC + CRT

output interface
UART

controller

AMBA AHB bus

CRT RS 232

LCD buffer

On-board LCD

ROM
Legacy RISC

processor
(LEON3)

(b) FPGA platform suitable for software integration.

Figure 5.5: Extension of an FPGA prototype into a complete system.

This extension was performed by other researchers [DKK+12].

E M U L A T E D
P L A T F O R M

Many-core
microthreaded

chip

DRAM

DDR3
channel(s)

Startup DMA
 (load program

image)

Final DMA
(dump memory

state)

Debugging
output

(a) Initial emulation platform

E M U L A T E D
P L A T F O R M

Many-core
microthreaded

chip

DRAM

DDR3
channel(s)

Debugging
output

ROM

UART
controller

RPC
controller

Graphical
framebuffer

Pseudo
terminal (pty)

Syscall
emulation

Graphical output (SDL)

LCD
controller

Standard
output

High-speed system network

SMC
(System mgt

chip)

(b) Extended emulation platform suitable for software
integration.

Figure 5.6: Extension of an emulation platform into a complete system.

This extension was performed as part of our work.

94 CHAPTER 5. SYSTEM PERSPECTIVE

and from monolithic kernels to distributed systems, require support for external control flow
preemption (traps and interrupts) at the pipeline level for scheduling, and either IPIs or
on-chip programmable packet networks for inter-processor control and system-level commu-
nication. Meanwhile, the proposed design from chapters 3 and 4 omits preemption from the
core pipeline to favor HMT instead. It also omits IPIs to favor a custom NoC supporting
active messages [vECGS92] instead.

Because of this mismatch, any effort to port an existing operating system would require
the system designer to either introduce the missing features into the architecture design,
with the risk that these would impact performance negatively and add complexity to the
machine interface, or redesign and re-implement the operating system components, which
would add another significant development expenditure to the porting effort.

Instead, we took a transverse approach which we detail in [PLU+12]: add one or more◻
companion processors implementing a legacy architecture to the platform, and use them
to run one or more instances of an existing operating system. We call this heterogeneous
integration. Once companion cores are available, it becomes possible to delegate any uses
of system services from application code running on the new architecture to the companion
processor(s).

The integration of a companion processor can be achieved either on-chip, i.e. on the same
die, or off-chip, i.e. in a different chip package, in either of two ways:

• the companion processor shares the same memory system. In this case, the arguments
and results of system services can be communicated implicitly through the cache co-
herency protocol. This is the approach taken in fig. 5.5b;

• the companion processor is a device on the I/O interconnect. In this case, the argu-
ments and results of system services must be marshalled. This is the approach taken
in fig. 5.6b.

The integration with shared memory provides the most flexibility for software and a higher
bandwidth, but requires that the legacy core design can integrate with the memory network.
Whether this is possible depends on the selected design: the address width, endianness and
layout of data structures by the compiler must be compatible. In contrast, the integration
on the I/O interconnect provides the most flexibility for the system integrator at the expense
of increased access latencies and reduced bandwidth due to the need to marshal arguments
and results.

Nevertheless, in either case, the porting effort for system services becomes minimal. The
only new implementation required is a set of wrapper APIs on the microthreaded processors
that serve as a proxy for a syscall interface implemented on the companion processor.

Although we developed this approach independently, we later recognized it in the “mul-
tikernel” approach proposed by the designers of Barrelfish [BBD+09], and at the larger scale
in the use of AMD Opteron chips to serve as “service processors” in Cray’s XMT next to
the main grid of simpler MTA cores [Kon07].

5.5.2 System architecture overview

From the software perspective, the platform is structured as follows:

• the microthreaded chip is connected to external memory and I/O devices through a
system interconnect;

5.5. PLATFORM DEFINITION 95

• memory and I/O devices either share the same interconnect (e.g. fig. 5.5b), or memory
uses a separate network (e.g. fig. 5.6b, cf. also section 3.4.1);

• a configurable Read-Only Memory (ROM) contains initialization routines and data
structures that describe platform parameters; for example, the number of processors,
the system topology, the access protocol on the NoC to the companion core(s), the
location of devices in the address space, the cache sizes, the RAM size;

• there is at least one I/O device suitable to define an interactive console (e.g. a Universal
Asynchronous Receiver-Transmitter (UART));

• there is at least one I/O device able to measure real time and trigger asynchronous
events at specified times (e.g. a Real-Time Clock (RTC));

• there is at least one I/O device suitable to exchange larger data sets with the outside
world (e.g. disk, network interface, etc.);

• there are one or more companion processor(s) running a legacy operating system for
system services that cannot be implemented on the microthreaded cores;

• upon start-up, the microthreaded processor automatically starts a thread running the
initialization code from ROM.

In the FPGA environment, the ROM contents are defined while configuring the fabric;
in the emulation environment, the ROM contents are initialized from file in the host envi-
ronment. Other I/O devices, like a graphical frame buffer and matrix displays were also
implemented but will not be considered further here.

Summary

Avoiding the HIMCYFIO pitfall, and marketing architectural innovations into existing com-
puting ecosystems require acknowledging both the current culture and assumptions of the
candidate audience. The integration of new features into usable systems should avoid in-
vesting in entirely new operating software code bases and instead benefit from reusing the
existing knowledge and software code base of the ecosystems.
This in turn may constrain the hardware designer to provide some backward compatibility◻
with past concepts. While this may feel like a restriction, it is also an opportunity to gain an
early audience. Most importantly, any fundamental design issues will be revealed by legacy-
oriented audiences just as well as they would be by custom, future-oriented new software
stacks; meanwhile, they can be revealed earlier by targeting first existing ecosystems and
taking their viewpoint.
Applying these guidelines to the architecture from chapters 3 and 4, we have proposed in◻
section 5.4 two candidate ecosystems and a strategy to achieve integration in this context.
This in turn requires the definition of a hardware platform, which we provided in section 5.5,
and allows us to plan software integration steps which will be followed by the following
chapters.

Chapter 6

First level programming environment
—A “quick and dirty operating system” for microthreaded chips

If it’s a good idea, go ahead and
do it. It is much easier to
apologize than it is to get
permission.

Admiral Grace Hopper

Abstract

In this chapter, we describe how to provide an implementation of C to the new
proposed architecture. We use non-standard features from GNU CC in an effective,
yet simple way to generate code for the new architecture. We also define a simple
input syntax to control the concurrency management primitives of the target machine,
which we call “SL.” We then generalize our approach as a compiler combinator which
can extend other code generators to recognize our input syntax. Finally, we use our
technology to port C library and operating system services to the platform introduced
in chapter 5.

Contents
6.1 Prior work . 98
6.2 Guiding considerations for an interface language . 98
6.3 Proposed code generator . 103
6.4 Operating software services . 110
Summary . 113

97

98 CHAPTER 6. PROGRAMMING ENVIRONMENT

6.1 Prior work

Prior to the work described in this dissertation, some research had been realized to de-◯
sign a C-based interface to the proposed architecture. This work was advertised starting
with [Jes06a] and culminating with [Ber10]. At the start of our research, we carried out an
extensive analysis of the design and semantics of this proposed interface, which we detail in
Appendix G.

To summarize, this language was based on a few language primitives that semi-trans-◻
parently expose the ISA semantics introduced in chapter 4. However, through analysis we
were able to identify the following shortcomings, not described in previous work:

• the proposed design only implements a subset of C, which conflicts with the require-
ments described below in section 6.2.1;

• it introduces significant complexity in the front-end and middle-end of a C compiler,
by requiring obtuse abstract semantics for the handling of synchronization channel
endpoints. We describe this in Appendix G.2;

• it cannot be compiled to first generation interfaces (cf. section 4.7), which prevents its
applicability to the UTLEON3 platform which we intended to support. We prove this
in Appendix G.3.

While we attempted initially to fix the design with minor semantic restrictions to extend
its applicability to all our target platforms, we were not able to find a satisfying simple
solution to all these shortcomings. We thus chose early to not invest further effort in this
direction. Instead, we point out that these shortcomings are a consequence of a research
strategy that attempts to design a language prior to and independently from its prospective
implementations in a compiler.

6.2 Guiding considerations for an interface language

6.2.1 Choice of C, language subset or superset

The choice of C as a starting point, as opposed to some other language, can be debated.
Indeed, C presents the burden that it was designed for mostly sequential computers, and the
programmability and generality of the proposed architecture design could be demonstrated
using languages designed with concurrency in mind, for example Erlang [AVWW96] or
Google’s Go [Goo].

Yet it is customary to implement C on new architectures. This is motivated first by the
ubiquity of C implementations that can be customized, the wide audience for the language,
and its de facto status as the low-level hardware interface language for the audiences iden-
tified in chapter 5 (including its role in implementing portable operating systems). Beyond
these practical motivations, we found that there are four fundamental properties of C that
are relevant in architecture research:

1. C is not a fixed language defined by specification; it is a family of languages, each
defined by the actual capabilities of its implementation, and the intention for interop-
erability between implementations.

6.2. GUIDING CONSIDERATIONS FOR AN INTERFACE LANGUAGE 99

Side note 6.1: Contenders to C to pitch new architectural designs.
LLVM IR/bytecode. This is a strong contender with C, however its developer communities still lack the

multiculturalism and distributedness of existing C communities as of this writing;
CLI (.NET) / JVM. These are not multifaceted, not lean, not multicultural, not distributed, and place

strong requirements on the underlying platform: mandatory isolation, mandatory preemption, manda-
tory coherent caches, etc.;

C++. Its language design derives from C, and most C++ compilers contain parts of a C compiler as a
substrate. The strategy we describe in the rest of this chapter rely on the parts of a C compiler
common with C++ compilers, and could thus be applied to C++ with no changes.

2. Those shared semantics of most C implementations that are used as reference by pro-
grammers, and thus collectively named “standard” and captured in [II99, II11b], care-
fully and deliberately avoid making assumptions about features available in the hard-
ware machine underlying any specific C implementation (any exceptions, e.g. required
support for preemption in signal, are encapsulated in library services, i.e. outside of
the core language).

3. Moreover, the C language is purposefully designed for hardware transparency, that is,
the language semantics do not attempt to hide the hardware machine interface.

4. All implementers of C are allowed to extend their implementation with new features not
found in other implementations; these can then be publicly scrutinized and discussed
by international communities of industrial, academic and private experts. Successful
extensions are usually adopted by other implementers and become candidate for future
standardization.

It is this combination of well-structured, multifaceted and lean semantics, an imple-
mentation-driven community, a tolerance for and promotion of hardware diversity, and a
multicultural, distributed meritocratic approach to new developments, not found combined
in any other language, that makes C unique and especially desirable for hardware architec-
ture research.

We were asked to comment on the opportunity to support only a restricted subset of
the C language in a new implementation. This seems interesting because any specific set of
evaluation or benchmark programs only needs the features sufficient to compile them, and
restricted language support may reduce the amount of testing required before releasing tools
for public use. In response, we advise strongly against exploiting this opportunity. While a
language subset may be sufficient to compile small test programs, ultimately the run-time
environment also requires library and system services whose code typically exploits most
features of C. In particular, if an implementer wishes to reuse existing library or operating
system code, an extensive implementation of C is needed with support for common non-
standard extensions. This is the perspective we took in our work.

6.2.2 Language primitives vs. APIs

Once new features are introduced in a machine interface, two ways exist to exploit them
from programs: encapsulation in APIs and embedding into the language via new primitive
constructs recognized by compilers and associated new translation rules to machine code1.

1In the case of C, extensions via the preprocessor’s #pragma feature is a form of embedding as it influences
code generation.

100 CHAPTER 6. PROGRAMMING ENVIRONMENT

Encapsulation is technically trivial, and it is desirable when porting existing software
using established APIs such as the POSIX thread interface. However the following must
be considered with the proposed architecture. As explained in chapter 4, a thread that
issues a long-latency asynchronous operation, e.g. memory load or thread creation, uses
regular ISA register names for the endpoints of the communication channels with the asyn-
chronous operation. Meanwhile, the proposed interface creates the opportunity to interleave
the asynchronous thread management operations (e.g. “allocate,” “create”) or inter-thread
communication operations with other instructions from the same thread. To exploit this
opportunity with encapsulation, the two phases must be part of separate API functions,
and code generators must be configured to avoid reusing these ISA register names for com-
putations while a thread management or communication operation is ongoing. Otherwise,
any register spills between phases will cause the thread to wait prematurely for completion
of the operation and waste an opportunity for overlapping instruction execution with the
asynchronous operation. The same applies for synchronizers that hold the future of asyn-
chronous completions (section 4.2): if the synchronizer that holds a future is spilled, this
would cause the creating thread to wait prematurely on the asynchronous operation. To
address these issues, a code generator would need to perform an inter-procedural register
allocation; furthermore, if the API implementation is compiled separately from the applica-
tion code, register allocation must then be deferred until all objects are available. Given that
no publicly available compiler framework had support for link-time inter-procedural register
allocation prior to our work, encapsulation seemed impractical with the new architecture
and embedding remained as the unavoidable strategy.

That said, there is also a quantitative reason as to why embedding is more desirable. The
architecture allows fine-grained, short-latency thread management and inter-thread commu-
nication; and the cost of diverting the control flow for a procedure call is large compared to
the synchronization latency (e.g. 40 processor cycles to transfer control to a different pro-
cedure vs. 6 cycles to create a family of one thread and 0-1 cycle to communicate a scalar
value from one thread to another). In this circumstance, the choice to embed the TMU
primitives as new language primitives reduces the overhead to exploit the synchronization
and scheduling granularity offered by the architecture.

6.2.3 General design directions

One design motivation that supported our work was to entice code generators and program-
mers to expose the fine-grained concurrency of numerical computations, even the partial
concurrency available in dependent computations, in order to enable the automated map-
ping in hardware of all program fragments, even a few instruction long, to separate cores
or hardware threads. This requires, for example, simplifying the replacement of sequen-
tial loops in programs by a construct that a) isolates simpler, non-repetitive communicating
sub-sequences, b) instructs the underlying hardware to run the fragments on separate, sim-
ple processors/threads and c) instructs the underlying hardware platform to connect the
processing units in a network of dataflow channels that corresponds to the computation
structure. When this design objective is reached, it becomes possible to transform depen-
dent loops in sequential programs by a network of dependent threads interleaved in the
pipeline, removing the need for branch prediction to maximize utilization.

Another motivation was to promote resource-agnosticism, that is promote the expression
of programs in a style where the semantics stay unchanged should the hardware parame-
ters evolve. In particular, the approach should discourage programmers from assuming,

6.2. GUIDING CONSIDERATIONS FOR AN INTERFACE LANGUAGE 101

or knowing, or restricting at run-time the specific amount of effective parallelism (e.g. the
number of processors or thread contexts available) when constructing algorithms. This is
because otherwise the program is tailored to a specific hardware topology and must be re-
designed upon future increases of parallelism. This requires language mechanisms that can
express concurrency mostly via data dependencies and declarative concurrency, in disfavor
of explicit control of individual thread creation and placement, and explicit inter-thread
communication. When these features are used, it becomes possible to scale the run-time
performance of a program by changing the amount of parallelism, and without changing
the machine-level encoding of the program. Conversely, it also becomes possible to run
any concurrent program on a single processor, since the program cannot assume a minimal
amount of parallelism. Thus the flexibility required for dynamically heterogeneous systems
(cf. chapter 2) is achieved.

We detail this second objective further in [PJ10]; they are shared with other language
designs, such as Cilk [BJK+95] or more recently Chapel [CCZ07].

6.2.4 Mandating a sequential schedule

We considered the hypothetical situation where there were no theoretical or research chal-
lenges to the implementation of code generators and operating software services. We then
considered what were instead the likely practical obstacles to evaluation of the platform.
The motivation was to determine early on what the likely obstacles were, then integrate
their avoidance as technical requirements.

We found that the validation of the infrastructure, which is the step immediately prior
to evaluation, was the largest obstacle. Validation ensures that the various tools function
as expected; that is, for each tool we can check for:

completeness: valid input is accepted successfully;
correctness: valid output is produced consistently from valid inputs;
consistent rejects: invalid inputs are rejected consistently with informative messages.

By negating any of these aspects, we can enumerate all the possible failure modes which
could be observed in a software stack with higher-level compilers targeting a C interface, in
turn targeting the hardware platform:

incompleteness errors :

‹F1› the higher-level compilers fail clearly on valid benchmark program;
‹F2› the code generator fails clearly on valid input source code;
‹F3› the assembler / linker fails clearly on valid input assembly;
‹F4› the reference hardware implementation fails clearly on valid machine code;

incorrectness errors :

‹F5› the higher-level compilers accept valid benchmark programs and produce invalid
code in the interface language;

‹F6› the code generator accepts valid input source code and produces invalid assembly
code silently;

‹F7› the assembler / linker accepts valid input assembly and produces invalid machine
code silently;

‹F8› the reference hardware implementation accepts a valid machine code and produces
incorrect outcomes;

102 CHAPTER 6. PROGRAMMING ENVIRONMENT

inconsistency errors (“false positives”):
‹F9› the higher-level compilers do not reject invalid benchmark programs and produce

apparently valid code with invalid behavior in the interface language;
‹F10› the code generator does not reject invalid input source code and produces appar-

ently valid assembly with invalid behavior;
‹F11› the assembler / linker do not reject invalid input assembly and produces appar-

ently valid machine code with invalid behavior;
‹F12› the reference hardware implementation does not reject invalid machine code and

produces unclear outcomes;
compound failures : any combination of the above.

Based on personal prior experience with complex infrastructures, we established the need
for clear methods to isolate failure modes and the components of compound failures as a
primary requirement for any technical realization. In particular, we put the following goals
at the highest priority:

• we needed to be able to clearly separate a) compounds of incorrectness errors upstream
and consistent rejects downstream from b) incompleteness errors. This is crucial to
establish responsibility upon failure. For example, if an error is observed at the code
generator, the cause of the error can be either failure mode ‹F5› or failure mode ‹F2›.
In the former case, the responsibility lies with the provider of higher-level compilers,
in the latter case with the interface language or below.

• we needed to be able to clearly separate a) incorrectness errors at one level from
b) compounds of incorrectness errors upstream with a stack of inconsistency errors
downstream. This is crucial to estimate the cost to fix the error. For example, if
an error is observed at the hardware implementation, the cause can be either failure
mode ‹F8› or a combination of failure modes ‹F5› and ‹F10› to ‹F12›. The pitfall is
that peer operating software providers may be tempted to believe failure mode ‹F8›
and push the responsibility for the error entirely towards the platform, whereas work
at all levels is actually necessary to resolve the situation.

Retrospectively, these concerns were not completely new. At the level of the hardware
implementation, both the partners in charge of UTLEON3 and the author of MGSim had
set up an environment where any machine code could be repeatedly run over multiple points
in the hardware design space (e.g. varying number of cores, various memory architectures).
This could distinguish invalid machine codes, i.e. “software errors” which would fail consis-
tently across all design points, from incorrectness or incompleteness errors in the hardware
implementation, i.e. “hardware errors” which would fail inconsistently across hardware de-
sign points. More generally, to support more detailed failure mode detection upstream across
software layers, extensive unit test suites and regression tests are needed.

Beyond unit testing, we decided to place an extra requirement on any C language exten-
sions: ensure that the C compiler can generate valid sequential code for any new language
constructs towards existing (legacy) downstream tools and architectures, e.g. commodity
desktop computers. This enables proper troubleshooting and analysis of behavior on existing
computers. This requirement is crucial to validate the correctness of the interface-level test
suite itself, and also to robustly distinguish inconsistency or incorrectness errors upstream,
under the responsibility of the higher level compiler providers, from any incorrectness or
incompleteness errors downstream, under the responsibility of the platform. This is akin to
requiring Cilk’s faithfulness [Lei09] or Chapel’s serializability [Cra11].

6.3. PROPOSED CODE GENERATOR 103

sl_create

sl_seta

sl_sync

sl_geta

(save parameters locally)

(save source values locally)
allocate
configure

create+wait

(access local var)

(populate channel sources)

(save channel sinks)

(a) Translation with fused creation.

sl_create

sl_seta

sl_sync

sl_geta

allocate
configure
create

put

sync+wait
get (and save locally)
release

(access local var)
(b) Translation with detached creation.

Figure 6.1: Translation of SL primitives for bulk creation (simplified).

We describe the difference between fused and detached creation in section 4.3.1.2.

6.3 Proposed code generator

After an initial step where we crafted various unit test suites as per the requirement above,
we attempted to realize the semantics of the desired language constructs using an unmodified
code generator and inline assembly: defining a thread program, defining dataflow channel
endpoints, using family creation instructions from the ISA.

Using a serendipitously powerful combination of existing language features from the◻
GNU C Compiler (GNU CC), we successfully implemented a freestanding C translation
environment [II11b, 4§6], with extra language constructs to access the new hardware con-
currency management features. We detail this experimental process and the corresponding
code generation strategy in Appendix H.

To summarize, our implementation is based on a front-end with three phases. The first
phase occurs between C pre-processing and translation: new syntax forms that look like
function calls, i.e. keyword followed by parameters between parentheses, are substituted
using context-free rules in M4 [KR77]. The substituted C code uses GNU CC extensions,
including inline assembly. Then GNU CC’s legacy code generator towards the substrate
ISA, i.e. without extensions, is invoked with flags to instrument the register allocation
and control the visible synchronizer windows (cf. sections 3.3.3 and 4.3.3). Finally, a post-
processor modifies the assembly code generated by GNU CC to adhere to the ISA semantics,
and extends it with control bit annotations for thread switching (section 4.4).

The new syntax forms thus form new language primitives that extend the C substrate
language. These language primitives expose fewer semantics than allowed to programs by
the machine interface (chapter 4); they also intentionally erase the distinctions between the
various hardware implementation variants, so as to be translatable to all of them from a
single source representation.

The resulting compiler technology is able to input a program source expressed once using◻
this interface language, and emit code for various implementations of the new architecture
and for a legacy sequential processor, as required in section 6.2.4. We call this interface
language “SL,” which we describe in detail Appendix I, and whose main constructs and
their translation are illustrated in table 6.1 and fig. 6.1. We further ensured that the main
command-line tool that controls the transformation pipeline, called slc, has the same in-
terface as an existing compiler command (gcc); this way, we were later able to successfully
reuse it as a drop-in replacement in existing build systems for legacy software, for example
existing C library code needed to run benchmarks as described below in section 6.4.

104 CHAPTER 6. PROGRAMMING ENVIRONMENT

Construct Description
sl_def(name„ channels...) {
body...
} sl_enddef

Define a thread program. The signature declares a
static set of channel endpoints.

sl_create(range, name,
channels...);
... sl_sync()

Perform bulk creation and synchronization on a
named thread program with “source” values for the
dataflow channels. Both parts form a single syn-
tactic construct.

sl_glparm(type, name),
sl_glarg(type, name [, v])

Declare a “global” dataflow channel endpoint.
Types are manifest. The “a” version optionally
provisions a source value.

sl_shparm(type, name),
sl_sharg(type, name [, v])

Declare a pair of “shared” dataflow channel end-
points. Types are manifest. The “a” variant op-
tionally provisions a source value for the “leftmost”
channel.

sl_getp(name), sl_geta(name) Read from the named endpoint of a dataflow chan-
nel.

sl_setp(name, v),
sl_seta(name, v)

Write to the named endpoint of a dataflow channel.

Table 6.1: Main constructs of the resulting SL language.

A specification is given in Appendix I; example uses are given in Appendices J and K;

-E -S

pre
pro
ce
ss

tra
ns
for
m

co
mp
ile

po
st-
pro
ce
ss

slc

SL
input
code

Figure 6.2: Overview of the placeholders in the SL tool driver.

6.3.1 Compiler combinators

A remarkable aspect of the SL tool chain, one originally motivated by short-term practical
requirements, is that it does not modify the underlying C compiler used to generate the
assembly code from the input source. Instead of going the “traditional route” of language
extensions by modifying an existing compiler and introducing new features throughout the
front-end, middle-end and back-end, we instead subverted the compilation pipeline of the
existing C compiler to “trick” it into creating valid code for the new architecture.

A bird’s eye overview is given in fig. 6.2: we first let the underlying compiler pre-process
the code, then we perform source-to-source transformations on the pre-processed code to
insert the new machine constructs via inline assembly and other techniques, then we let the
underlying compiler process the code, and finally we post-process the generated assembly
source to ensure its validity to the target machine interface. We detail this scheme in
Appendix H. We then made it simple to configure which underlying compiler is used and the
set of rules for the upstream code transformation and downstream assembly post-processing.

6.3. PROPOSED CODE GENERATOR 105

-E -S + SL
mta
config

gcc
linux
alpha = SL

input
code

valid
memory
image

for microthreaded
Alpha ISA

(a) with alpha-linux-gnu-gcc.

-E -S + SL
mts
config

gcc
linux
sparc = SL

input
code

valid
memory
image

for microthreaded
SPARC ISA

(b) with sparc-linux-gnu-gcc.

-E -S + SL
seqc
config

legacy
cc = SL

input
code

valid
memory
image

for sequential
execution

(c) with a legacy C compiler.

Figure 6.3: Combinations of the SL tool chain with various underlying C compilers.

We would like to suggest that the resulting framework is a compiler combinator : given◻
an existing C compiler, we can combine the existing compiler with a set of rules and our tool
chain to obtain a new compiler for a different target and/or an extended input language.
With this methodology, we were later able to quickly support three different implementations
of the new architecture (a 64-bit platform with the Alpha ISA and two 32-bit platforms
using the SPARC ISA) and sequential execution by simply changing the operands of the
combinator, as illustrated in fig. 6.3.

We consider the generality of this approach, together with our ability to reuse existing
code generators without changes, to be a confirmation that the new architecture’s design
can be considered as an add-on improvement on existing ISAs, instead of a radical new
approach to programming parallel processors at a low level. As we show in the remainder
of our dissertation, the originality of the proposed design is found at a higher level, with
memory semantics and resource management. By choosing an implementation strategy that
keeps away from complex approaches to code generation, we were able to invest more effort
into addressing system-level issues. Besides, our strategy does not sacrifice performance:
the benchmark results in chapter 13 show that our non-intrusive, blunt approach to code
generation was sufficient to exploit the architecture’s fine-grained concurrency management
features.

The generality of the framework was confirmed again later with the successful re-targeting
of the SL tool chain to other software-based concurrency management frameworks [vTJLP09,
Mat10, UvTJ11] for existing hardware architectures.

6.3.2 Discussion on the generality of the approach

As we detail in Appendix H, to achieve our implementation we used standard features
from [II99, II11b] and a tool box formed of carefully selected pre-existing language extensions
from the GNU C Compiler (GNU CC):

106 CHAPTER 6. PROGRAMMING ENVIRONMENT

• type inference with the typeof keyword [Fred], to produce declarations to new vari-
ables with the same type as an existing variable, for example:
__typeof__(a) b;

• inline assembly with the asm keyword with access to enclosing local C variable from
the assembly code [S.03, Frea], for example:
__asm__("mov %1,%0" : "=r"(b) : "r"(a));

• explicit machine registers for local variable declarations [Free], for example:
int a __asm__("$1");

• the ability to exclude selected register names from register allocation [Frec], for exam-
ple using the command-line argument -ffixed-$1.

We investigated whether our implementation was tied to GNU CC due to the use of
these non-standard language extensions, or whether the strategy could be adapted to other
compiler technologies. The purpose of this investigation was twofold. First, we acknowledge
a recent trend (post-2010) that promotes LLVM as a substitute to GNU CC for general-
purpose programming, and we wish to ensure a future transition path, should one become
necessary. Second, we wish to highlight that the successful exploitation of the architectural
features was not dependent on this specific compiler technology, so as to enable third parties
to develop their own compiler technology instead.

We found active support for typeof also in IBM’s and Intel’s compilers [IBMb, Intb], and
in ARM’s compiler until version 3.0. Although this construct for type reuse in C variants is
still relatively uncommon, we expect support for this feature to become prevalent once the
new C++ language standard [II11a] is adopted by vendors: most industry-grade frameworks
share features between their C and C++ compilers and the new standard mandates support
for the C++ decltype keyword with identical semantics as typeof.

Support for the asm keyword has been historically pervasive across implementations
of C. It is the main means provided to C programmers by the compiler implementer to
bypass the compiler and emit machine instructions explicitly. We found active support for
both asm and the use of C variables in inline assembly in particular in Microsoft’s Visual
C/C++ compiler [Cor], Oracle’s (previously Sun’s) Solaris Studio compiler [Ora11], IBM’s
XL compiler [IBMa], Intel’s C/C++ compiler [Intc], ARM’s compiler [ARMa], LLVM and
its Clang front-end [LLV], and Open Watcom [Con08].

Support for explicit mapping of variables to registers is less prevalent but not unique
to the GNU implementation either. We found that it is supported by Intel’s and ARM’s
compilers using the same syntax as GNU [Intb, ARMb] and in Open Watcom via pragmas.

Finally, we also found support for customizable register sets during register allocation
in Intel’s compiler (-mfixed-range, [Inta]). The set of available machine registers is also
expressed explicitly in the source code of Open Watcom’s and LLVM’s back-end code gener-
ators, so one could manually modify this set and generate multiple compilers with different
register uses in each. We expect that this technical modification could be realized in pro-
prietary compilers as well, if need arises.

To summarize, although we were fortunate to find this conjunction of features and their
flexibility in the GNU implementation, we can reasonably expect that other compilers sup-
port similar features, or can be modified to support them at a low cost.

6.3.3 The need for manifest typing

The reason why we separate the syntax to declare integers and pointer thread arguments
(sl_glparm, sl_glarg) from the syntax for floating-point (sl_glfparm, sl_glfarg) is that

6.3. PROPOSED CODE GENERATOR 107

1 sl_create (. . .) ;
2 i f (cond)
3 sl_sync (. . .) ;

(a) Halves not in the
same level.

1 i f (cond)
2 sl_create (. . .) ;
3 sl_sync (. . .) ;

(b) Halves not enclosed in
a block.

1 i f (cond) {
2 sl_create (. . .) ;
3 sl_sync (. . .) ; }

(c) Valid use: halves en-
closed in a block.

Figure 6.4: Example uses of sl_create...sl_sync.

they must be translated to different register classes in the inline assembly, and our translation
strategy cannot analyze C types.

This syntax is undesirable because it exposes a feature of the underlying ISA (namely,
different register classes on Alpha) that C was originally intended, by design, to hide. More-
over, this proposal is incomplete as support for C’s long double and _Complex types require
other register classes or register pairings on most ISAs which would require yet additional
SL syntax with the current implementation.

Instead, to alleviate this issue and properly hide register classes without introducing
type analysis in the source-to-source transformer, we suggest that future work use the new
_Generic construct from [II11b, 6.5.1.1] which can select different expressions based on the
actual type of a conditional expression. This mechanism would enable delegating the task
of choosing the right implementation based on the type information to the underlying code
generator.

6.3.4 Why “create” and “sync” are bound

A characteristic SL feature, detailed in Appendix I.5.8.1, is the binding between the words
“sl_create” and “sl_sync” in one syntax rule for C’s block item. This implies, for example,
that the forms in figs. 6.4a and 6.4b are invalid, whereas the form in fig. 6.4c is valid.

There are three motivations for this, one fundamental and two practical.
The fundamental motivation is to hide the semantic distinction between “fused creation”

ISAs and “detached creation” ISAs introduced in section 4.3.1.2. To hide this, we specify
that the created work starts “no earlier than sl_create” and “no later than sl_sync” in the
control flow. This is to provide the understanding to the programmer that either part of
the construct is ultimately responsible for the actual creation, without specifying which. If
the language had allowed to omit sl_sync, as in fig. 6.4a, we would not be able to generate
code for fused creation ISAs where the information needed for creation, generated by uses
of sl_seta, is only fully known at the point sl_sync is reached. We detail this further in
Appendix G.3.

The first practical reason is that each use of sl_create expands to both multiple state-
ments at the point where it is used, and new variable definitions at the beginning of the
current scope. The scope is identified by the last preceding occurrence of the left brace “{”
in the program source. The new variables are used both by the expansion of sl_create
and subsequently by the expansion of sl_sync. If the language would allow sl_sync to
occur in a higher-level scope than sl_create, then the variable declarations would need to
be pulled upwards to the first common scope. This is not possible in our setting, because
some of the data types involved may be defined with typedef in the inner scope. A proper
treatment of this would require full type analysis of the program source, i.e. a full-fledged
C front-end, which is what we tried to avoid in the first place.

108 CHAPTER 6. PROGRAMMING ENVIRONMENT

sl_create

sl_seta

sl_detach

allocate
configure
create

put

release
(a) Detached creation with lexical
binding.

sl_spawn

sl_spawnsync

allocate
configure
create
put

sync+wait
release

(b) Separated creation and syn-
chonization.

Figure 6.5: Translation of SL primitives for detached creation (simplified).

The other practical reason is that if the language would allow the pair “sl_create-
sl_sync” to occur in a position in the C syntax which only accepts statements (as in
fig. 6.4b), we would confuse text editors and other source analysis tools which assume that
the semicolon is a statement separator.

6.3.5 Opportunities for platforms with detached creation

Setting aside the aforementioned requirement to support fused creation ISAs, and focusing
instead exclusively on ISAs featuring detached creation, an opportunity exists to expose this
flexibility in the language interface.

We explored this opportunity as follows. First we extended the pair “sl_create-sl_sync”
with a new form “sl_create-sl_detach” with the same lexical structure as described above
in section 6.3.4, but where the bulk synchronizer is released upon sl_detach without syn-
chronization (fig. 6.5a).

We also defined a new statement sl_spawn which performs bulk creation, sends source
values for the dataflow channels, and produces the identifier for the remote bulk synchro-
nizer into a variable. We then defined a new statement sl_spawnsync that combines both
synchronization on the named bulk synchronizer and releasing the bulk synchronizer. We
summarize this in fig. 6.5b. As is, this construct does not allow spawned workloads to use
the “shared” dataflow channels from section 4.3.3.3, because the argument list of sl_spawn,
necessary to declare the temporary variables to hold the channel sink values, may not be
visible from sl_spawnsync.

Through discussions with our users, we obtained the following feedback:

• the behavior of sl_spawnsync is only properly defined if it is used only once by
a program on a given bulk synchronizer. This is because after a first occurrence
releases the synchronizer, any further occurrence would use a stale, invalid synchronizer
identifier. The hardware protocol is not designed to handle this situation. Because of
this, the definition of proper functional futures [Hal85] using sl_spawn...sl_spawnsync
with multiple uses of the second half would require an additional flag to test the validity
of the bulk synchronizer, which must be updated atomically throughout the system at
the first run-time use of sl_spawnsync.

• a problem exists if the argument list of “sl_create...sl_detach” or “sl_spawn” does
not fit entirely through hardware synchronizers. Indeed, our implementation escapes
arguments to the call stack, as we will describe in chapter 8 for sl_create...sl_sync;
this approach can only be used if the lifetime of the activation record of the creating

6.3. PROPOSED CODE GENERATOR 109

thread extends beyond the lifetime of the created thread(s). This is only true if
sl_spawnsync is executed before the escaped arguments are cleaned up, or the created
workload terminates before the creating thread. To solve this the language feature
must be constrained in either of the following ways:

– sl_spawnsync must appear within the same C scope at sl_spawn; or
– sl_spawn and sl_create...sl_detach are restricted to only accept N arguments,

where N is an implementation-specific constant that describes the number of
channels physically available; or

– sl_spawn and sl_create...sl_detach allocate extra arguments on a shared heap.
Then either the first use of sl_spawnsync (for sl_spawn), or the termination
of the created work, whichever happens last, becomes responsible for the de-
allocation of the argument data from the shared heap.

The spectrum of solutions to these issues involve complex trade-offs between usability▷
and performance which we did not explore fully. Lacking understanding of these trade-offs,
we chose instead to not advertise these constructs as an official language feature. Instead, we
used them as a system-oriented feature (i.e. hidden from applications) to implement some
of the operating software services described below in section 6.4.

6.3.6 Discussion on the language design and future work

We do not claim any innovation in terms of programming language design. We acknowledge
that the proposed language constructs are crude and tailored to the specific architecture
considered. Their semantics are a mash-up of concepts borrowed from traditional fork-join
parallelism, bulk-synchronous parallelism, Cilk, and previous work from our research group,
selectively chosen to facilitate the demonstration of the proposed machine interface.

A scientific contribution should be found instead in the careful choice of syntax which
enables straightforward code generation from the same source semantics to a diversity of
platforms, using a relatively simple wrapper around existing compilers (section 6.3.1).

Since the advertised innovation is to be found in the machine interface, it follows that▷
a diversity of existing programming languages could be extended or ported towards the
proposed architecture. For example:

• the parallel loop constructs with static scheduling from OpenMP [Ope08], independent
loops in Fortran, and the parallel loops from Intel’s TBB [Rei07], map transparently
to bulk creation and synchronization in our platform. The variants of these constructs
that require dynamic scheduling can be translated to a program using the run-time
scheduler from [SM11].

• the fork-join constructs from Cilk can be mapped onto sl_spawn/sl_spawnsync such
as described in section 6.3.5. The issues we identified with sl_spawn/-sl_spawnsync
would not apply because Cilk forces its “sync” construct to be in the scope of its
“spawn” constructs and does not allow multiple “sync” occurrences for each “spawn.”

• the vector operations from OpenCL [Khr09] can be translated to bulk creation and
termination of threads running programs that implement the corresponding OpenCL
operators. OpenCL’s explicit memory types can be discarded as there is only one
shared memory system.

Note that the existing languages’ semantics cannot be translated to SL source text, in
other words SL cannot serve as a common intermediate representation for the diversity of

110 CHAPTER 6. PROGRAMMING ENVIRONMENT

concurrency constructs in existing languages. This is because these languages also contain
additional data types, synchronization devices and scheduling hints which do not have equiv-
alents in SL, although they could be implemented by directly targeting the machine interface
from chapter 4 in a dedicated code generator.

To conclude, we do not advertise our SL extensions as the only possible interface language
to the target architecture. Common interfaces, if any were defined, would likely exist as the
internal intermediate representations in compilers’ middle-ends. Instead, we propose our
work as a modest yet practical vehicle to bootstrap further research in this environment.

6.4 Operating software services

We subsequently used the aforedescribed new compiler technology to port operating software
code as described in the sections below.

6.4.1 Minimal run-time requirements

The minimal run-time environment required by the test and benchmark applications we
considered includes support for:

• the following components from the standard C library: math functions, string manip-
ulation, console output (stdout, stderr), heap allocation.

• the following POSIX services: abnormal asynchronous termination (abort), file I/O
(read/write).

Autonomous services from the C library can be obtained cheaply by reusing standard
F/OSS implementations, as we describe below in section 6.4.3. Existing heap allocators
mostly require only the traditional service sbrk which can be implemented cheaply on a flat
address space. In contrast, console and file access are a more costly requirement because
they imply full-fledged support for external I/O channels, persistent storage and filesystems.
To implement these cheaply, we used the heterogeneous integration with companion cores
described in section 5.5.1.

6.4.2 Operating system services

We used companion processors to support file access: we implemented “proxy” functions◻
for the base POSIX calls open, close, read, write, link, unlink, sync, dup, dup2,
getdtablesize, fsync, rename, mkdir, rmdir, stat, fstat, lstat, opendir, fdopendir,
rewinddir, telldir, seekdir, closedir, readdir. This was sufficient to implement the
streams and file I/O APIs from the standard C library and support direct uses of the system
interface for file access by programs. We also wrapped the supplementary X/Open “parallel
I/O” operations pread and pwrite, because contrary to read / write these provide the
file position explicitly and can thus be issued concurrently from separate threads without
interference. We surmise that extended file access APIs such as POSIX’s asynchronous I/O
interfaces (aio_read, aio_write) can be added similarly at minimum cost.

Several system services, in contrast, did not require to delegate the behavior to the◻
companion processor: system memory allocation (sbrk and anonymous mappings with mmap)
can run locally on the microthreaded cores to support C’s malloc. Time and date functions
(gettimeofday, which support C’s time) can access a RTC device directly. We also used
the substrate ISA’s time-stamp counters to support C’s clock.

6.4. OPERATING SOFTWARE SERVICES 111

To implement console input-output (POSIX’s special file descriptors 0, 1, 2), we im-◻
plemented a configuration option which selects between various I/O device combinations
(e.g. either the UART or matrix display devices).

The following features were designed but are not yet implemented:▷

• for dynamic process creation (vfork+exec) and process data encapsulation, a loader
can make a copy of the initial program data segments in the shared address space, a
strategy suitable with an Alpha ISA substrate, which uses GP addressing, or alter-
natively the entire program image is duplicated and re-linked, as suggested with the
default image format for the SPARC ISA substrate;

• the environment variables (for C’s getenv) are loaded from ROM for the first program,
and subsequently inherited upon further process creations.

• during program initialization, the loader creates a new thread of execution from the
program’s entry point, which maps to the C library initialization routine, which in
turn initializes the C library’s internal state (e.g. malloc’s allocation pool), runs any
program-defined data constructors and finally transfers control to the program’s main
function.

Instead, in our implementation we provided a simple loader able to execute a single mono-
lithic program with both application and operating software in a single memory image. We
suggest the features above as future work.

6.4.3 C library services

To avoid re-implementing a C library from scratch, we studied how to reuse existing code.
To select a code base, we pre-selected existing implementations satisfying the following
requirements:

‹L1› available in source form, either in C or assembly source for one of the target ISAs,
because it had to be recompiled/re-assembled to the binary format suitable for the
new architecture;

‹L2› suitable for cross-compilation, since the platform where the code was compiled would
not be the target architecture;

‹L3› suitable for execution on a shared memory heavily multithreaded platform, since this is
the basic setting of all selected benchmarks;

‹L4› modular, since not all library functions would be needed and some could not be possibly
supported initially anyways, such as support for file access;

‹L5› compiler-agnostic, since we could not guarantee support for specific existing non-
standard C extensions beforehand.

We then analyzed those few codebases that satisfy requirements ‹L1› and ‹L2›: newlib
[Red], µClibc [YMBYG08, pp. 115–127] [And], the GNU C library [Freb], the standard C
library of BSD systems [MBKQ96, McK99], the standard C library of OpenIndiana2 [JIS].

Our results are summarized in table 6.2. The implementations from GNU and OpenIn-
diana needed to be excluded early because of requirement ‹L5›. We then considered the
following choice: either start from a thin embedded implementation and improve it to en-
sure that it would be suitable for use in a large multithreaded setting, or start from a larger

2OpenIndiana was forked from OpenSolaris when Oracle discontinued the OpenSolaris project.

112 CHAPTER 6. PROGRAMMING ENVIRONMENT

Implementation ‹L3› ‹L4› ‹L5›
newlib yes no yes
µClibc no yes yes
BSD yes yes yes
GNU yes no no
OpenIndiana yes no no

Table 6.2: Requirements satisfied by existing C library implementations.

The listed implementations all satisfy requirements ‹L1› and ‹L2›.

implementation that satisfied requirement ‹L4› and reduce its dependencies on underlying
operating system support.

We adopted the latter approach, starting from the BSD components, for the following
reasons:

• analyzing the uclibc and newlib implementations revealed multiple shared global-scope
variables and a design made with the assumption of sequential execution; adding the
necessary state protection to arbitrate state access during concurrent execution seemed
an arduous task, with the associated high risk of errors that would add a potentially
costly troubleshooting overhead to the benchmarking efforts;

• due to its longer history and wide audience, the BSD library is more comprehensive
feature-wise and thus its selection reduced a priori the risk that our choice would fail
to support any additional application requirement discovered in a later phase of our
research.

By reusing components from the FreeBSD project [MNN04] with few changes, we were◻
able to provide comprehensive support for the following C standard services: diagnostics
(assert.h, [II99, B.1]/[II11b, B.1]); character handling (ctype.h, [II99, B.3]/[II11b, B.3]);
errors (errno.h, [II99, B.4]); characteristics of floating types (float.h, [II99, B.6]); sizes of
integer types (limits.h, [II99, B.9]/[II11b, B.9]); mathematics (math.h, [II99, B.11]/[II11b,
B.11], support for long double omitted); variable arguments (stdarg.h, [II99, B.14]/[II11b,
B.15]); boolean types and values (stdbool.h, [II99, B.15]/[II11b, B.17]); common definitions
(stddef.h, [II99, B.16]); integer types (stdint.h, [II99, B.17]); buffered output functions,
including formatted output, on standard output streams and character strings (stdio.h,
[II99, B.18]/[II11b, B.20]); a subset of the general utilities (stdlib.h, [II99, B.19]/[II11b,
B.21]); a subset of the string handling functions (string.h, [II99, B.20]/[II11b, B.23]); a
subset of the date and time functions (time.h, [II99, B.22]/[II11b, B.26]).

The remaining standard library services from [II99] and other newer features from [II11b]▷
were not implemented because they were not needed by the test applications we considered.
If they were ever needed, the following could be imported from existing codebases at little
cost: extensions from [II11b] to the services already listed above, format conversions of inte-
ger types [II99, B.7]/[II11b, B.7], alternative spellings for operators [II99, B.8]/[II11b, B.8],
localization [II99, B.10]/[II11b, B.10], alignment operators [II11b, B.14], standard input
and file access [II99, B.18]/[II11b, B.20], the arithmetic general utilities [II99, B.19, abs,
div, etc.]/[II11b, B.21], multi-byte/wide character utilities [II99, B.19,B.23,B.24]/[II11b,
B.21,B.27,B.28,B.29], and type-generic math functions [II99, B.21]/[II11b, B.24], the “no
return” function specifier from [II11b, B.22].

In contrast, the following services would require more research and effort:▷

6.4. OPERATING SOFTWARE SERVICES 113

• support for complex arithmetic (complex.h, [II99, B.2]/[II11b, B.2]) and long floating
types (long double) would require extra attention during code generation as they
require more than one machine register (or synchronizer in the proposed architecture)
for a single variable;

• support for controlling the floating point environment (fenv.h, [II99, B.5]/[II11b,
B.5]) requires a hardware interface to control the FPU in the platform;

• non-local jumps (setjmp.h, [II99, B.12]/[II11b, B.2]) require platform-specific, hand-
coded assembly code as they cannot be expressed directly in C;

• signal handling (signal.h, [II99, B.13]/[II11b, B.13]) conceptually conflicts with the
purpose of hardware microthreading, a topic which we revisit later in sections 14.2
and 14.5;

• the process management interfaces (system, atexit, [II99, B.19]/[II11b, B.21]) require
operating system support for separated processes, a topic which we revisit later in
sections 14.4 and 14.5;

• support for atomic object access and threads introduced in [II11b, 5.1.2.4, B.16, B.25]
does not map directly to the proposed concurrency management features, a topic which
we revisit in chapter 7.

To summarize, the large compatibility of the proposed C compiler with legacy C code
allowed us to reuse large existing code bases for operating software components. The result-
ing combination of compiler and library code provides a large subset of the standard hosted
C execution environment from [II11b, 4§6, 5.1.2.2].

Summary

We have acknowledged prior work which has attempted to provide an interface language◯◻
to the proposed architecture, and we demonstrated the shortcomings of this approach. We
have outlined the design requirements for a machine interface language derived from C. We
then adopted a practical implementation strategy based on maximum reuse of existing tools.
Using this strategy, we succeeded in providing a C compiler for the target architecture. We
also provided a meta-compiler that implements transformations of a C language extension,
which we call “SL,” towards multiple platforms including the proposed architecture from
part I. While our implementation exploits compiler features specific to GNU, we also show
that the strategy is portable to other compiler substrates. Then using our freestanding
programming environment, we subsequently ported existing operating software components
suitable to run hosted C programs on the platform introduced in chapter 5. We also outlined▷
how to extend this software support in future work.

Chapter 7

Disentangling memory and
synchronization
for shared state and communication

The important thing in science is
not so much to obtain new facts
as to discover new ways of
thinking about them.

William L. Bragg

Abstract

In this chapter, we highlight the opportunity to synchronize program behavior
by means other than memory. Then we show how to expose synchronization and
consistency semantics in the proposed interface language from chapter 6.

Contents
7.1 Introduction . 116
7.2 Extending C with memory-independent synchronization 119
7.3 Extending C with multi-thread consistency . 123
7.4 Examples of incorrect synchronization . 127
7.5 Pitfall: atomicity anomalies . 130
7.6 Relationship with the latest C and C++ specifications 131
7.7 Position of the model from the programmer’s perspective 132
7.8 Other related work . 132
Summary . 135

115

116 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

Side note 7.1: About implicit communication.
From an information-theoretic perspective, communication exists as soon as information is exchanged be-
tween a sender and a recipient. Communication requires that the parties share a commonality a priori,
usually shared semantics for the language of messages; however it typically does not require a third party
to participate in the exchange. We recognize two extended forms of communication which actively rely on a
third party. The first is proxied communication, where the third party acts as a relay for the signal without
sharing the commonality between sender and recipient. Encrypted network channels are examples: the
intermediary network nodes that carry the encrypted bits do not know the keys necessary to provide mean-
ing to the messages exchanged. The second is implicit communication, where a third party is the shared
commonality. For example, the meaning of the message “the meaning of this message is to be read from
the first book published tomorrow” cannot be derived from the text of the message itself; instead it must
be fetched from the external shared commonality, in this case the first book published tomorrow. In this
chapter, we are considering implicit communication that occurs between processors using the information
in shared storage devices as shared commonalities.

7.1 Introduction

Ever since the advent of architectures where multiple processors, or virtualizations thereof
via threads, can access a single storage device via their interconnect, computer users at all
levels of abstraction have attempted to exploit the opportunity for implicit communication
which exists between stores issued by one processor and loads issued by another, regardless of
whether the processors may be connected to each other via dedicated communication channels.
To clarify, we provide our definition of “implicit communication” in side note 7.1.

While investigating diverse applications and languages, we were able to reduce all uses
of implicit communication to only two essential patterns. The first is persistent shared
state in multi-agent computations, e.g. the service provided by a shared file system. This
is characterized by the ability to observe the state even when no agent is active, and the
ability of the agents to access the state without knowing a priori which other agent last
accessed it. The other is implicit communication channels, i.e. the ability to communicate
an arbitrarily shaped data structure by using only a reference to it. We distinguish these
two services here to ground the following observations:

• shared state and communication channels are abstract concepts which do not require a
physically shared storage to be implemented. For example, if shared state can be rep-
resented logically, it can be transferred between the physical locations where it is used
without the need for a central repository; this is the principle behind REpresentational
State Transfer (REST) [Fie00]. Communication channels, in turn, can be implemented
by serializing the arbitrarily shaped data over dedicated links between processors, sep-
arate from the memory system;

• each of these two concepts requires different kinds of support from the substrate hard-
ware with regards to synchronization. To implement shared state, the substrate must
provide mechanisms for transactions, to provide an illusion of atomicity of multiple
updates by one agent from the perspective of other agents. To implement channels,
the substrate must provide mechanisms to guarantee order of communication events
and signal the availability of data or the readiness of the agents to participate in a
communication activity.

Despite this distinction, the conceptual model of general-purpose processors has been
historically simplified to the point that the memory interface has become the only communi-
cation interface between the processor and its outside world. There are three consequences
to this:

7.1. INTRODUCTION 117

• this simplification has allowed programming language designers to conflate the concept
of side effect with the concept of memory operation, whereas previously side effects
would also include actions on other physical links than those connecting the processors
to memory (e.g. dedicated I/O links);

• the simplification has diluted the need in programming languages to expose the shape
and purpose of data accessed concurrently by different processors to the underlying
platform: all memory addresses are considered symmetrical with regards to their reach-
ability, and programs do no longer explicitly distinguish which addresses participate
in a multi-processor activity from those that don’t;

• it has created a general understanding and expectation from software implementers
that the memory system is “the great coordinator ” between processors, and that the
only synchronization primitives available in programs are one-size-fits-all memory-
centric mechanisms like “atomic fetch-and-add” or “atomic compare and swap” that
can be used to implement both shared state and communication channels.

This conflation of concepts is worrying. By erasing the conceptual nuance between state,
communication and memory, it erases the fact that shared state and communication are
actually built upon fundamentally separate synchronization mechanisms. The innovation
space where architects could introduce other features, next to memory, with different and
more efficient characteristics, is thereby reduced. Moreover, it creates pressure on the
providers of memory services, i.e. memory architects and system integrators, to provide
increasingly comprehensive mechanisms for synchronization. Mechanisms to control the
ordering and signalling required by logical communication channels, in particular, increase
the overall logic and energy cost of the memory system as a whole even for those uses
of memory not concerned by multi-processor interactions. This pressure is the origin of
discussions about “memory consistency”, which we revisit below in section 7.1.1.

Hopefully, future architectural innovations will safeguard and exploit the conceptual
nuances identified above in general-purpose computers. We can recognize an example
step in this direction with “scratchpad memories,” [BSL+02] where small, dedicated and
non-synchronizing memories are placed next to cores on Multi-Processor Systems-on-Chip
(MPSoCs) with other mechanisms like hardware mailboxes [FH76] to organize synchroniza-
tion and communication between cores.

The proposed architectural innovation we described in part I also contributes to this
vision. As we explain below in section 7.1.2, it negotiates synchronization between processors
via mechanisms distinct from memory. We show a possible abstraction of these semantics
in a system-level language interface in sections 7.2 and 7.3, which we apply in sections 7.4
and 7.5. We then discuss related work in sections 7.6 and 7.8.

7.1.1 The pressure on memory: from simple to less simple

The original definition of “memory” is a physical device which provides some guarantee
that the values sent via store operations will be read by subsequent load operations. It is
fundamental because it is one of the two halves of the general computer, the other half being
the processor, which makes the computing system analogous to a Turing machine, and thus
able to compute (cf. section 1.2.1). It is also quite simple and inflexible: the memory must
guarantee that loads from one processor will return the value most recently stored by that
processor, no matter what; otherwise, computation is not possible. This inflexibility holds
for a single-threaded processor, or in a concurrent system for its simplest virtualization, the
single thread.

118 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

Once multiple processors, or threads, are connected together, a choice then exists in a
design: either each of them can only access its own memory isolated from other processors,
or they can share storage devices. As outlined above, the purpose of such sharing is a desire
of software implementors to enable implicit communication between stores issued by one
processor and loads from another, in a quest for more simplicity in programming models.
Without this sharing, processors can typically only communicate via explicit point-to-point
messages (“message passing”).

The first implementations were simple: each “memory” was a single physical device, and
the links between processors and memory simply preserved the ordering of the operations as
issued by the processors. The use of such an architecture in programs is not too complicated:
stores by any processor are visible in the same order by all other processors sharing the same
memory. This guarantee is called “sequential consistency,” and was long the de facto machine
abstraction for multi-programming.

What happened then was a back-pressure from hardware architects.
One force was the introduction of caching, especially separate caches for separate pro-

cessors connected to the same backing store. As storage capacity grows, latency of access
grows too. When its sharing factor increases (more processors per storage unit), contention
occurs and the latency of access grows more. Caching is then desirable to provide the illusion
of uniform, lower latency to access larger storage, given some locality of access. However,
cache protocols, in particular coherency protocols responsible for propagating cache updates
between multiple processors, are expensive to implement if they must provide the illusion
of sequential consistency. It is much cheaper for the architect to “break the contract” in
part, for example by saying that a store by a processor will only affect its local cache and
that further loads by other processors will not see the update until the first processor ex-
plicitly flushes its changes. This is simpler to implement and incurs less pressure on the
cache-memory network, but it does not respect the expectation of global visibility in the
sequential model. As such, it makes the implementation of shared state and communication
channels over memory, the two applications identified above, somewhat more difficult.

The other force was the introduction of reordering across network links, for example for
congestion control or extra ILP within processors. Even in the absence of caches and using a
single memory, reordering can cause stores from two processors to arrive in a different order
than they were emitted. For example, a thread A can perform “a := 10; b := 20; barrier”
and a thread B can perform “barrier; a := 30; b := 40” and the memory ends up containing
“a=30” and “b=20”. Again, this contradicts an expectation of the sequential model, this time
the preservation of store order. This constitutes another obstacle to the implementation of
shared state and communication channels.

In addition, both techniques (caching and reordering) can combine, creating even more
exotic situations. The status quo at the time of this writing is a trade-off, where the architect
combines the cheaper consistency protocols with extra control over the memory system,
namely barriers to flush stores globally, acquire-release locks to delineate a subset of stores
that must be implicitly propagated globally, and reordering fences which disable reordering
selectively, usable by programs to declare their intent to obtain the illusion of sequential
consistency for identified sequences of loads and stores. We should deem this state of affairs
still unsatisfactory, as these primitives do not scope synchronization: when updates must
be propagated, the memory system must assume that they must become visible everywhere.
Even though application knowledge may exist to inform that the data is needed only in a
specific area of the system, and thus create an opportunity to save synchronization latency

7.2. EXTENDING C WITH MEMORY-INDEPENDENT SYNCHRONIZATION 119

and energy, there is currently no mechanism to communicate this knowledge to the hardware
in general-purpose designs.

To summarize, issues of consistency, which are at the heart of the discussion about the
programmable semantics of multi-processor systems where memory coordinates all interac-
tions, is the result of the collision between software implementers, who strive for conceptual
simplicity, and hardware architects, who strive for simplicity in the implementation towards
more efficiency and scalability.

7.1.2 Synchronization and memory in the proposed architecture

The innovation from part I is focused on the internal organization of cores for latency toler-
ance, and the efficient coordination of work distribution across multiple cores. It proposes
that threads can synchronize using dedicated dataflow synchronizers in hardware within
cores, and uses a dedicated delegation network combined with a distributed bulk creation
and synchronization protocol implemented in hardware.

What interests us here is that this innovation is fundamentally agnostic of how the cores
are connected to storage, i.e. it does not mandate a specific memory architecture nor does
it propose specific mechanisms to coordinate access to data. Instead, it proposes the same
synchronization mechanisms regardless of whether a shared memory system is available, and
regardless of what consistency semantics are available in the shared memory, if any.

Of course, this approach does not preclude a chip design using a strongly consistent
memory system in combination with the proposed core design and inter-core synchroniza-
tion subsystem. For example, the FPGA-based implementation introduced in section 4.7
connects the proposed core design to a traditional memory bus. However, at the same time
the approach strongly suggests exploring whether the hardware synchronization mechanisms,
which are independent from memory, could provide a powerful multi-core programming envi-
ronment when coupled with a simple, efficient, scalable but weakly coherent memory system
that does not offer synchronization mechanisms.

This is the approach that we introduced previously in section 3.4.1. For example, the
reference processor chip implementation that we used to define the platform from chapter 5
provides cache coherency between cores that share a single L2 cache, but updates to L2
caches are only propagated upon bulk creation and synchronization events. This means
that a thread running on a core connected to an L2 cache cannot communicate or share
state reliably using memory with a thread running on a core connected to another L2
cache, even though they can organize communication and synchronization using the dedicated
synchronization network.

Given these circumstances, we explored whether we could abstract the semantics of our
platform in an abstract machine suitable for a programming language like C. This process
is especially important because most computing ecosystems rely on the abstract machine of
system-level language interfaces to construct software and define its semantics, instead of
using knowledge about the specific hardware platforms. The rest of this chapter documents
our findings.

7.2 Extending C with memory-independent synchronization

In this section we explain how the ordering of concurrent operations is decided from the◻
order of execution of special synchronizing operations by programs, independently from the
order of loads and stores to memory.

120 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

7.2.1 Synchronizing operations and “scheduled before”

1 We consider the execution of programs on a parallel machine, where virtualized processors,
i.e. threads, enter and leave the system dynamically.

2 Each thread executes a thread program consisting of instructions, each specifying the exe-
cution of one operation at run-time. The operations correspond to an observable effect on
the direct environment of the processor that executes it, for example changing the state of
an I/O device, advancing an instruction counter, or issuing a load or store to a memory
system.

3 We call the program order between instructions, specified by the thread program’s control
flow in a programming language, the “sequenced before” order, and we denote it →. This is
equivalent to the relation of the same name in [II11b, 5.1.2.3§3].

4 Certain operations synchronize with other operations performed by another thread. This
relation is asymmetric: if b synchronizes with a, the execution of b does not start before a
completes, but no extra information is given as to when the execution of a starts.

5 We name the partial ordering of the execution of operations at run-time “scheduled before”,
we denote it ↝, and we specify:

• “sequenced before” constrains “scheduled before”: if a and b are instructions, and ar
and br are the corresponding operations at run time, then a→ b⇒ ar ↝ br

• all implementations of the abstract machine guarantee that the execution of a ready op-
eration x starts a finite amount of time after all operations {y ∣ y ↝ x} have completed.
This guarantees progress of execution for all schedulable operations.

6 We say that two operations a and b are concurrent if a /↝ b and b /↝ a. An implementation
may execute concurrent operations simultaneously, or choose an arbitrary scheduling order
between them.

7 The definition of the special synchronizing operations below extends the ↝ relation and thus
constrains scheduling further.

7.2.2 Threads and families

7.2.2.1 Threads

1 We denote the set of all logical threads T .
2 For readability, we will denote henceforth “x(i)” for “operation x executed by thread i ∈ T ,”

and
i→ the sequence order of operations executed by i.

3 We denote begin(i) and end(i) the minimum and maximum of
i→, i.e. the first and last

operations executed by a thread. Threads that perform no operations can be considered to
execute a single pseudo-operation with no effect so that begin and end are always defined.

7.2.2.2 Families

1 T is partitioned in totally ordered subsets named families.
(the grouping of threads into families are an emergent sub-structure of T
caused by the use of the c operation (described below in section 7.2.3) by
programs)

2 We denote F (i) ⊂ T the family of thread i, and ∠ the total order within a family.
3 We denote:

• for any family F , the first thread of F, denoted first(F), that dominates all other threads
in F via ∠;

7.2. EXTENDING C WITH MEMORY-INDEPENDENT SYNCHRONIZATION 121

• for any family F , the last thread of F, denoted last(F), which is dominated by all other
threads in F via ∠;

• for any family F and t ≠ last(F) ∈ F , the successor of t in F , denoted succ(t), verifying
/∃ t2 ∈ F ∶ t∠t2∠succ(t).

(the last thread in a family has no successor; in a family of one thread, the
only thread is both the first and last thread)

4 Each family F is further partitioned as a set of sequential segments seq(F), which are
sub-sets of participating threads that are executed internally sequentially.

5 We further name segment prefix the sub-set of a sequential segment that contains all threads
in that segment but the last via ∠, i.e. ∀S ∈ seq(F), prefix(S) = {t ∣ t ∈ S∧∃t′ ∈ S ∶ t∠t′}.

6 Sequential segments further constrain scheduling as follows:

∀S ∈ seq(F),∀t ∈ prefix(S), end(t)↝ begin(succ(t))
Rationale: This denotes that within a sequential segment, the end of a thread
dominates the start of its successor in the scheduling order. This expresses
that there is no concurrency between threads that belong to the same segment,
whereas concurrency may still exist across separate segments. This constraint
reflects the sequential scheduling of logical threads over thread contexts intro-
duced in sections 3.3.1 and 4.2.

7.2.3 Schedule ordering of threads from family creation

1 The abstract machine provides a special synchronizing operation c[F], called “family cre-
ation.”

2 This constrains scheduling as follows:

∀t ∈ F c[F]↝ begin(t)

7.2.4 Schedule ordering of threads upon family termination

1 The abstract machine provides a special synchronizing operation s[F], called “family syn-
chronization.”

2 This constrains scheduling as follows:

∀t ∈ F end(t)↝ s[F]

7.2.5 Dataflow synchronizers

1 The abstract machine defines a set O of dataflow synchronizers and a set V of unit values.
2 It then provides the following special synchronizing operations on these synchronizers, de-

noted for any o ∈ O:
• rs(o) for “start synchronizing read,”
• rf(o) for “finish synchronizing read,”
• q(o) for “query synchronizer,”
• w(o, v) for “synchronizing write” (v ∈ V), and
• e(o) for “clear synchronizer.”

122 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

3 “Start synchronizing read” and “finish synchronizing read” are pseudo-operations that always
come in pairs in programs, expressed as a single concrete “synchronizing read” instruction
that entails both operations immediately one after the other during execution.

Rationale: We distinguish them because only the completion of a synchroniz-
ing read is constrained, as described below.

4 We will denote “xs(o)” for “any operation that is either a rs, rf , q, w or e operation on o.”
5 All xs operations on a given synchronizer are atomic, even across threads:

∀o,∀xs(o),∀xs′(o) ≠ xs xs↝ xs′ ∨ xs′ ↝ xs
6 “Finish read” operations synchronize with writes the first time after a clear:

∀e(o), ∀rf(o) ∶ e ↝ rf ∧ (/∃ e′ ∶ e ↝ e′ ↝ rf), ∀w(o, v) ∶ e ↝ w ∧ (/∃ w′ ∶ e ↝ w′ ↝ w) ∧ (/∃ e′ ∶
e↝ e′ ↝ w), w ↝ rf

7 The effect of executing an unprovisioned “finish read” operation is undefined, i.e. any rf
such that e ↝ rf ∧ (/∃ w ∶ e ↝ w ↝ rf) may not complete, trigger a fault to signal deadlock
or effect some other unspecified behavior.

8 Each read rf(o) evaluates to the value v ∈ V stored by the most recent w(o, v) according to
↝: ∀r(o),∀w(o, v) (/∃ e(o) ∶ w ↝ e↝ r) ∧ (/∃ w′ ∶ w ↝ w′ ↝ r)⇒ r(o) yields v

9 Each query q(o) evaluates to the value v ∈ V stored by the most recent w(o, v) according to
↝, if any exists; otherwise, i.e. if there is no last w or if the last non-q operation on o is a
rs or e operation, it evaluates to a non-deterministic, unspecified value of V.

10 Each thread i is associated with a partial function of Z to O, denoted V [i], that represents
its visible dataflow synchronizers. (For example V [i](n) ∈ O is the n-th synchronizer visible
by i.)

7.2.6 Mapping of synchronizers to families

1 O is partitioned between families, i.e. a given synchronizer o may be visible from multi-
ple threads within a family but is not visible from threads belonging to different families:
∀(i, n, i′, n′) F (i) ≠ F (i′)⇒ V [i](n) ≠ V [i′](n′)

2 The execution of a program shall occur as if an initial “clear” operation was issued to every
visible synchronizer prior to the execution of all threads, i.e. ∀i ∈ T ,∀o ∈ V [i],∃e0(o) ∶ e0 ↝
begin(i)

7.2.7 Dataflow synchronization between families

1 The abstract machine provides two operations w̄[i](n, v) (i ∈ T , n ∈ Z, v ∈ V) and q̄[i](n),
respectively for “remote synchronizing write” and “remote query,” which may be executed
by other threads than i.

2 The execution of one w̄[i](n, v) operation incurs, after a finite amount of time, the execution
of one w(V [i](n), v).

3 The execution of one instance of q̄[i](n) incurs, after a finite amount of time, the execution
of one q(V [i](n)); the execution of q̄ further produces in the thread where it is issued the
value produced by the corresponding q.

7.2.8 Mapping in the language interface

The items defined above are exposed in the proposed SL extensions to C as follows:

• C’s evaluations map to operations of the abstract machine;

7.3. EXTENDING C WITH MULTI-THREAD CONSISTENCY 123

• thread programs in SL, and the C functions called recursively from them, map to
thread programs in the abstract machine;

• the “sl_create...sl_sync” construct entails the execution of a c (family creation)
operation no earlier than the point “sl_create” is reached during execution, and no
later than the point “sl_sync” is reached;

• the “sl_create...sl_sync” construct entails the execution of a s (family synchroniza-
tion) operation at the point “sl_sync” is reached during execution, and thus execution
does not proceed past “sl_sync” until all threads in the created family have termi-
nated;

• the logical index range and “block size” parameters to “sl_create” define the sequen-
tial segments of the created family, as detailed in Appendix I.5.8.1;

• SL’s dataflow channels map to the abstract machine’s dataflow synchronizers;
• the “sl_seta” construct entails the execution of a w̄ operation, and “sl_geta” entails

the execution of a q̄ operation;
• the “sl_setp” construct entails the execution of a w operation, and “sl_getp” entails

the execution of a rs/rf operation pair.

The q and e operations are intendedly not exposed in SL, although the platform im-
plementation may support them, in order to encourage the expression of deterministic,
sequentializable programs.

7.3 Extending C with multi-thread consistency

In this section, we explain under which circumstances stores by one thread are visible to◻
loads by another thread, as a function of the scheduling order defined in the previous section.

7.3.1 General condition for consistency

1 The abstract machine provides a set L of locations, corresponding to “memory addresses.”
2 It then defines two operations ld(l ∈ L) and st(l ∈ L, v ∈ V), for “load” and “store” respectively.
3 It then defines for every location l ∈ L, a partial consistency order for l, denoted

l≺, over all
ld and st operations operating on l.

Rationale: The partial order ≺ is defined independently for every memory
address. This is intended to support the independent ordering of memory
operations touching separate cache lines in a cache coherency protocol.

4 The abstract machine then defines a visibility property over ld and st operations as follows.
Given some operations st(l, v) and ld(l), if the following conditions all hold:

• st
l≺ ld, and

(a store st to a given location precedes a load ld from the same location)

• /∃ st′ ≠ st st
l≺ st′ l≺ ld, and

(there is no other store st′ to the location that precedes ld and is preceded
by st)

• /∃ st′ ≠ st st′ /l≺ ld ∧ ld /l≺ st′,
(there is no other store st′ to the same location that neither precedes ld
nor is preceded by ld)

then st is visible from ld.

124 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

Rationale: This property establishes visibility as a function of the consistency
ordering, separately for every memory address.
Note that the third condition is possibly non-intuitive: unless ≺ is further
constrained, any store not related to a load via ≺ effectively “hides” any other
store to the same location from that load, even those related via ≺ and including
those dominated by the load. This provision exists because we consider weakly
coherent cache systems which do not protect against erroneous race conditions
in programs.

5 The abstract machine then defines a provision property as follows: any load ld is provisioned
if there exists at least one store st visible from ld in ≺.

6 Further, the following hold:

• if an st operation starts, then it completes within a finite amount of time;
Rationale: Stores should complete eventually.

• if a provisioned ld operation starts, then it completes within a finite amount of time;
and the actual value produced by its execution is an element of the set of values written
by the st operations to the same location that are visible from ld.

Rationale: Loads should complete eventually if they are provisioned. Fur-
thermore, if they are provisioned they yield one of the values stored most
“recently” according to ≺.
Meanwhile, the behavior of unprovisioned ld operations is undefined. For
example, an implementation may cause halting, a deadlock, or produce a
value that causes halting or deadlock of any subsequent operation using
it, or produce a non-deterministically chosen valid value.

7 A program is consistent if all its possible executions that are compatible with the abstract
machine guarantee that all loads are provisioned.

8 A load operation is a data race if it is provisioned by more than one store.
9 A program is deterministically consistent if it is consistent and executes no data race.

7.3.2 Communication domains

◻

1 The abstract machine provides the notion of Implicit Communication Domain (ICD).
2 Each pair of (thread, location) is associated with exactly one ICD, noted C(i, l).
3 The abstract machine then specifies that precedence implies visibility, within the same com-

munication domain:

∀(i, j),∀x(i)(l),∀y(j)(l) [C(i, l) = C(j, l) ∧ x↝ y]⇒ x
l≺ y

Rationale: ICDs capture the notion of implicit communication between stores
and loads within a region of the system, and constrained by the partial ordering
between threads. In particular stores from different threads that are not mutu-
ally ordered via ↝ can “hide” each other as per clause 7.3.1§4. ICD boundaries
correspond to boundaries in the system where implicit communication is not
guaranteed, even between operations ordered via ↝.

7.3.3 Consistency domains

◻

1 The abstract machine provides the notion of Consistency Domain (CD).

7.3. EXTENDING C WITH MULTI-THREAD CONSISTENCY 125

2 Each pair of (thread, location) is associated with exactly one CD, noted C̄(i, l).
3 The abstract machine then specifies that all loads and stores within the same CD to the

same location appear in some order globally visible within the CD:

∀(i, j),∀x(i)(l),∀y(j)(l) C̄(i, l) = C̄(j, l)⇒ x
l≺ y ∨ y l≺ x

Rationale: CDs capture the notion of “eventual visibility” of stores for all
subsequent loads within a region of the system. Stores not synchronized via ↝
cannot “hide” each other within a CD if there are no unordered stores issued
outside the CD. CD boundaries correspond to boundaries in the system across
which stores may not be propagated automatically.

4 Henceforth the set of all consistency domains is noted C. We will also denote “xC” for “an
operation x executed by a thread associated to consistency domain C.”

7.3.4 Memory communicators

With the definitions so far, threads can communicate arbitrarily via memory within CDs,◻
and the store-load visibility follows the edges of the scheduling order within ICDs. However,
no provision is made to make stores executed in one ICD visible to loads executed in another
ICD. For this purpose, we introduce semi-explicit communication operations as follows.

1 The abstract machine defines a set M of memory communicators, and a set R of relative
locations for use with communicators.

2 It then provides three communicating operations:

• b[R](m), for “bind m to a set R of relative locations” (m ∈M,R ⊂R);
• p(m), for “propagate updates to the locations bound to m” (m ∈M);
• a(m), for “activate updates to the locations bound to m” (m ∈M).

(b and p are intended for use by the writer side, whereas a is intended for use
by the reader side)

3 It also provides a relative addressing partial function t which translates, within a given
consistency domain and relative to a given memory communicator, a relative address usable
in programs into an address suitable for implicit communication through the communicator:
t ∶ C ×M ×R↦ L.

4 The abstract machine then proposes the following service: any store to a location that is
scheduled after a b operation and before a p operation and which operates on a location
bound by b, becomes visible to loads scheduled after an a operation if a is scheduled after
p, given that b, p and a operate on the same communicator. In other words:
For any given communicator m, ∀m ∈M,
given two ICDs C1 and C2, ∀(C1,C2) ∈ C2,
given a range of relative addresses R, ∀R ⊂R,
for any b, p operations executed in C1 and a exe-
cuted in C2 such that b is scheduled before p and
p is scheduled before a,

∀(bC1[R](m), pC1(m), aC2(m)) ∶
b↝ p↝ a,

for any relative address l in that range, ∀l ∈R,
if l1 = t(C1,m, l) and l2 = t(C2,m, l) then

for any st operation on l1 scheduled between b
and p in C1,

∀v ∈ V,∀stC1(l1, v) ∶ b↝ st↝ p,

and for any ld operation on l2 scheduled after a
in C2,

∀ldC2(l2) ∶ a↝ ld,

126 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

the execution of ld(l2) occurs as if an operation st(l2, v) was visible from it in the same
ICD, i.e.

∃stC2(l2, v) ∶ st
lt≺ ld

(the b(m) operation “captures” a range of addresses into m and starts “record-
ing” stores, until a p(m) operation which “propagates” the changes. The a
operation in a different consistency domain then “activates” the changes so
they can be used by further loads.)

5 If multiple stores to the same location occur between a b and p operation pair, or if multiple
p operations are scheduled before a corresponding a, then only the last in the ≺ order will
be visible to loads occurring after a.

7.3.5 Possible implementations of t, b, p and a

Distinct platform implementations may provide the b, p and a operation and t function via
separate mechanisms. We provide three examples below.

Note that a, b and p are not synchronizing; therefore they must be combined with the
other synchronization mechanisms from section 7.2 to ensure e.g. that a is not executed
before p completes.

7.3.5.1 Using message passing and a “push” protocol

• b prepares output buffers for a communicator;
• t accesses the output buffers;
• p sends the buffer to the “destination” of the communicator, the data is received
asynchronously at the destination;

• a finishes waiting on reception of the data.

7.3.5.2 Using message passing and a “pull” protocol

• b prepares output buffers and associates addresses with the communicator;
• p is no-op;
• a remotely reads the data from the “sources” of the communicator;
• on the origin side, t is the identity; on the pulling side, t either is the identity (single

address space) or addresses a receive buffer.

7.3.5.3 Using the proposed platform

• the b and m operations are no-ops,
• t is the identity;
• p is implemented using a write memory barrier which flushes outstanding stores glob-
ally.

7.3.6 Mapping in the language interface

The items defined above are exposed in the proposed SL extensions to C by stating that the
addresses of bytes in C objects map to locations in the abstract machine, and that accesses
to objects in programs map to ld and st operations. The visibility of object updates from
object reads is then decided by the consistency rules and the scheduling order as per the
specification above.

7.4. EXAMPLES OF INCORRECT SYNCHRONIZATION 127

1 thread i : thread j :
2
3 A: s t (l1 , v1) D: s t (l2 , v3)
4
5 B: s t (l1 , v2) E: ld (l 2)
6
7 C: ld (l 1)
8 . . .

Listing 7.1: Two unrelated threads.

Note that no further language support is available here to control the communication
operations b, p and a and use the t function. Because of this, the language described in
Appendix I can only be used to program within one communication domain.

Extra SL support for cross-ICD communication has been explored by peers and is re-
ported on in [Mat10]: their work proposes to introduce explicit “memory objects” into the
language, which are a combination of dataflow synchronizers and memory communicators,
operations on these that control b, p and a, and accessors for the t function. These are
then automatically removed, at compile time or run-time, if both sides of a communicating
activity are known to be running within the same consistency domain.

We also sought to support cross-ICD communication in our proposed platform from▷
chapter 5 without inserting new language constructs. We noted that a, b and t are transpar-
ent (cf. section 7.3.5.3 above), and then we proposed to insert a p operation in the generated
code immediately before every c and s operation. This enables implicit cross-ICD commu-
nication from all cores. While we implemented this feature in our proposed compiler from
chapter 6, we highlight that this technique incurs excess memory barriers when threads are
created within the same ICD. A more efficient approach should thus attempt to determine
automatically when p is not needed based on placement information and elide it in those
cases.

7.4 Examples of incorrect synchronization

7.4.1 Abstract example to illustrate the hiding effect

Consider a program causing the concurrent execution of the two threads in listing 7.1,
unrelated through synchronization. By construction, we have A

l1≺ B
l1≺ C and B is visible

from C. Likewise, D
l2≺ E and D is visible from E. The program is consistent.

Consider now a program executing concurrently the threads in listing 7.2. Because we
do not know that C

l≺ D, nor do we know that D
l≺ C, we must understand that D hides

both A and B, so C is not dominated by a store to l and the program is not consistent.

7.4.2 Invalidated idioms

We assume the following examples run within one CD.
A load ld may observe the value written by a store st that happens concurrently with

ld. Even if this occurs, it does not imply that loads happening after ld will observe stores

128 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

1 thread i : thread j :
2
3 A: s t (l , v1) D: s t (l , v3)
4
5 B: s t (l , v2)
6 . . .
7 C: ld (l)
8 . . .

Listing 7.2: Two unrelated threads with a race condition.

1 int a , b ;
2 sl_def (f) {
3 a = 1 ; b = 2 ;
4 } sl_enddef
5

6 sl_def (g) {
7 pr in t (b) ; p r i n t (a) ;
8 } sl_enddef
9

10 sl_def (main) {
11 sl_create (, , , , , , , f) ;
12 sl_create (, , , , , , g) ;
13 sl_sync () ;
14 sl_sync () ;
15 } sl_enddef

Listing 7.3: Independent ordering of loads/stores to different addresses.

to another address that happened before st. For example, in the program from listing 7.3,
it can happen that g prints 2 and then 0.

Double-checked locking is an attempt to avoid the overhead of synchronization. For
example, the twoprint program might be incorrectly written as in listing 7.4: there is
no guarantee that, in doprint, observing the store to done implies observing the store to
a. This version can unexpectedly, but correctly print an empty string instead of "hello,
world". Instead, proper synchronization is achieved using listing 7.5.

Another incorrect idiom is busy waiting for a value, as in listing 7.6. As before, there
is no guarantee that, in main, observing the store to done implies observing the store to
a, so this program could print an empty string too. Moreover, if the threads are merely in
the same ICD but maybe in different CDs, there is no guarantee that the store to done will
ever be observed by main, since there is no synchronization between the two threads. The
loop in main is not guaranteed to finish. There are subtler variants on this theme, such as
the program in listing 7.7. Even if main observes g != NULL and exits its loop, there is no
guarantee that it will observe the initialized value for g->msg.

7.4. EXAMPLES OF INCORRECT SYNCHRONIZATION 129

1 char∗ a ; bool done ;
2 sl_def (setup) {
3 a = " he l l o , ␣world" ;
4 done = true ;
5 } sl_enddef
6 sl_def (dopr int) {
7 i f (! done) {
8 sl_create (, , , , , , , setup) ;
9 sl_sync () ;
10 }
11 pr in t (a) ;
12 } sl_enddef
13

14 sl_def (twopr int) {
15 sl_create (, , , , , , , dopr int) ;
16 sl_create (, , , , , , , dopr int) ;
17 sl_sync () ;
18 sl_sync () ;
19 }

Listing 7.4: Implementation of twoprint, insufficiently synchronized.

1 sl_def (twopr int) {
2 sl_create (, , , , , , , dopr int) ; sl_sync () ;
3 sl_create (, , , , , , , dopr int) ; sl_sync () ;
4 } sl_enddef

Listing 7.5: Proper synchronization for twoprint.

1 char∗ a ; bool done ;
2 sl_def (setup)
3 { a = " he l l o , ␣world" ; done = true ; }
4 sl_enddef
5

6 sl_def (main) {
7 sl_create (, , , , , , , setup) ;
8 while (! done) {}
9 pr in t (a) ;
10 sl_sync () ;
11 } sl_enddef

Listing 7.6: Invalid busy waiting for a value.

130 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

1 typedef struct {
2 char ∗msg ;
3 } T;
4

5 T∗ g ;
6

7 sl_def (setup) {
8 T∗ t = mal loc (s izeof (T)) ;
9 t−>msg = " he l l o , ␣world" ;
10 g = t ;
11 } sl_enddef
12

13 sl_def (main) {
14 sl_create (, , , , , , , setup) ;
15 while (g == NULL) {}
16 pr in t (g−>msg) ;
17 sl_sync () ;
18 } sl_enddef

Listing 7.7: Invalid busy waiting on a pointer.

7.5 Pitfall: atomicity anomalies

Atomicity anomalies can appear when the granularity of consistency offered by an imple-
mentation is different from the one assumed by the high-level description of a program.
Intuitively, the granularity of consistency corresponds to the minimum “size” of two values
so that, if they are stored “next to each other” they will still have different locations.

The first anomaly is the following. Suppose that machine addresses identify 4-byte long
objects, but the programmer is treating one machine object as 4 different 1-byte abstract
objects each with a different (abstract) location. Two independent threads may each perform
an update to two different abstract locations, expecting each update to be visible to a
successor load within the same thread from the same (abstract) location. But, if these 1-
byte values are packed into the same 4-byte platform location, then these stores are really
concurrent stores to the same location. Consequently, one of the two stores may non-
deterministically mask the other, or they may mask each other, and the update to one of
the bytes, or both, may be lost. The solution to avoid this problem is to avoid packing
together abstract objects that might be updated by concurrent stores. In our platform from
part I and chapter 5, the machine granularity is 1 byte so this problem is avoided.

The other anomaly is the following. Suppose the system supports 4-byte concrete objects,
but the programmer wants to manipulate an 8-byte logical object. If two concurrent threads
each update the entire 8-byte object, the programmer might expect a common successor 8-
byte load via ↝ to receive one of the two 8-byte values written previously. However, the
8-byte load may non-deterministically receive 4 bytes of one value and 4 bytes of the other
value, because the 8-byte load is really two 4-byte loads, and the consistency of the two
halves is maintained separately. Note that this problem can only occur if the load is a data
race. When programs are written to avoid data races entirely, programmers need not worry
about it. In our platform from part I and chapter 5, this granularity anomaly only appears
with assignments to aggregate types whose size is larger than the underlying ISA’s word
size, that is 8 bytes on Alpha or 4 bytes on SPARC.

7.6. RELATIONSHIP WITH THE LATEST C AND C++ SPECIFICATIONS 131

7.6 Relationship with the latest C and C++ specifications

Concurrently to our own research, the American National Standards Institute (ANSI) pub-
lished a new specification for both the C and the C++ languages [II11b, II11a]. Compared
to [II99, II03], this new version introduces concurrency semantics in both languages, pur-
posely crafted by their respective working groups to be mostly compatible with each other.
These additions can be summarized as follows:

• the notion of concurrently executing threads is introduced. C++ specifies that all
threads are fairly scheduled (“Implementations should ensure that all unblocked threads
eventually make progress.” [II11a, 1.10§2]), whereas C does not.

• synchronization between threads is introduced via special atomic objects, which are
regular memory-based objects declared with the specifier _Atomic. Accesses to the
same atomic object are globally ordered, and special “acquire” operations (used for
mutex locks) synchronize with special “release” operations (used for unlocks).

• the visibility of updates to non-atomic objects relative to subsequent evaluations of
those objects is decided via a “happens before” partial order between operations, con-
strained between concurrent threads by the interleaving of accesses to atomic objects.

In short, the designers of these extensions assume that the memory is “the great coor-
dinator” as we explained in section 7.1. Their definition of the “happens before” relation
between operations is particularly complex, because it must simultaneously specify the visi-
bility of non-atomic object updates and the visibility of updates to atomic objects. Although
these updates have quite separate consistency rules (atomic accesses are synchronizing, non-
atomic accesses are not), because they are both memory objects their definition must be
interleaved to decide what constitutes a race condition vs. a consistent access.

In contrast, our semantics allow the programmer to reason about execution order inde-
pendently from memory accesses. The resulting situation is that although we started from
the same language (C and C++ as per [II99, II03]), our proposed semantics diverge from the
direction taken by ANSI for C and C++. The question thus arises of whether this situation
is desirable and what are its consequences.

Here we start by observing that the concurrency semantics of [II11b, II11a] can be
emulated in our environment by containing the execution of the entire program within
one consistency domain, and requiring the memory system to provide support for atomic
transactions. This is possible because:

• neither [II11b] nor [II11a] mandates a minimum number of simultaneously executing
threads, so the platform restrictions on the number of thread contexts may freely
constrain how many of [II11b, II11a]’s thread creations may occur;

• all valid non-racy executions according to [II11b, II11a] are valid non-racy executions
in our abstract machine within one CD;

• data races are defined in both [II11b, II11a] and our abstract machine to result in
undefined behavior.

Because [II11b, II11a] can be emulated, we can provide a backward compatibility environ-▷
ment in an implementation of SL, where any program that requires [II11b, II11a]’s semantics
is forced to run on a region of the system contained within one CD, without changing the
abstract machine. We conclude that our proposed abstract machine is more general than
those envisioned by ANSI for C and C++. We then revisit how operating software can
constrain the placement of programs to specific consistency domains in chapter 11.

132 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

7.7 Position of the model from the programmer’s perspective

In [KMZS08] the author attempts to isolate criteria to classify programming models for
parallel systems. The proposed criteria are:

1. System architecture: shared memory vs. distributed memory.
2. Programming methodologies: how concurrency is exposed to programmers (API, di-

rectives, language extensions, etc)
3. Worker management : how execution units are managed, implicit (MPI, OpenMP) vs.

explicit (Pthreads)
4. Workload partitioning scheme: how workloads are divided in chunks (tasks), implicit

(OpenMP) vs. explicit (MPI)
5. Task-to-worker mapping : how tasks are mapped to workers, implicit (OpenMP) vs

explicit (POSIX threads)
6. Synchronization: time order in which shared data is accessed, implicit (UPC) vs.

explicit (MPI)
7. Communication model : private shared address space, message passing, global parti-

tioned address space, etc.

Within this classification we place our system as follows. With regards to system archi-
tectures, our system aims to target both shared memory systems and distributed memory
systems. Information about locality, if available, can be used to optimize code and re-
duce communication overhead by eliding uses of the b, p and a primitives. The proposed
abstract machine does not mandate a specific programming methodology. Our SL imple-
mentation (including the extensions presented by [Mat10]) use language extensions while
another [vTK11] uses an API. Workload partitioning is explicit, but fine grained. Our sys-
tem suggests the definition of separate threads even for very small units of work. Once this
is done, the granularity can be made coarse again by aggregating threads together automat-
ically (run as loops), as we suggest in chapter 10. This has been described also in [Mat10].
Worker management, task-to-worker mapping and synchronization are mostly implicit in
our system. A form of optional explicit mapping is introduced later in chapter 11. The
communication model, subject of this chapter, is a global address space augmented with
consistency and implicit communication domains, that defines regions of the address space
where communication can be largely implicit. Across domains, communication must be
more explicit.

7.8 Other related work

Our abstract machine borrows concepts both from Global Address Space (GAS)-derived
models such as UPC [UPC05], Fortress [ACH+08], Titanium [YSP+98], Co-Array For-
tran [NR98], and from dataflow (implicit synchronization) models such as Cilk [BJK+95]
and Google Go [Goo].

7.8.1 Weak consistency within ICDs, overview from Go

Go is a concurrent programming language developed by Google. It provides goroutines,
which are small lightweight threads. Memory consistency between concurrent goroutines is
relaxed.

7.8. OTHER RELATED WORK 133

The weak consistency model proposed by our system within a given implicit communica-
tion domain shares much similarity with Go. The similarity is so close that the description
of Go’s memory consistency1 also describes consistency within an ICD in our system. In
particular, by stating that stores not ordered by thread synchronization can hide each other,
Go shares our visibility semantics from clause 7.3.1§4.

7.8.2 Comparison with Cilk

Cilk [BL93, BJK+95, Joe96] was developed by MIT as both a programming language and
an execution model. The Cilk programming language extends a subset of C in a way that
a deterministic Cilk program stripped of all Cilk keywords becomes a valid C program with
the same functional behavior.

However the Cilk execution model is more general than the Cilk language itself. The
unit of work in Cilk, as with our system, is a logical thread. Thread definitions in Cilk are
also schedule agnostic, i.e. the synchronizing dependencies between threads are explicit and
the run-time system only guarantees that they are satisfied without specifying the execution
order.

The essential difference between Cilk and our system is the granularity of synchroniza-
tion. In Cilk, a thread begins to execute only after all its dependencies are satisfied; it then
runs until completion at which point its output is checked to see if it satisfies a dependency
for another thread. In our system, threads can start even when not all their dependencies are
satisfied; running threads can wait for termination of threads they have created previously;
and ordering is guaranteed between individual reads and writes to dataflow synchronizers
visible across threads. Also, new threads can be created and start executing even during
the execution of their parents.

Due to this difference, our execution model is more general and fine-grained than Cilk
with respect to synchronization and concurrency. This stems from the following observation:
any Cilk program using N concurrent execution units can be executed within our model with
N execution units, using only one consistency domain. However a program that can use N
concurrent execution units in our model may not be able to use more than M units when
expressed using Cilk primitives, with M < N , because parent/child and family siblings
which are concurrent in our system would need to be scheduled in sequence in Cilk to
satisfy dependencies.

Apart from this principal difference, the consistency models proposed for Cilk ([Joe96,
Chap. 6], [BFJ+96]) and our model are similar. In Cilk, stores are visible from loads if
they dominate loads according to the directed acyclic synchronization graph defined by
inter-thread dependencies. This is called “DAG consistency”. In our model, stores are also
visible from loads if they dominate loads according to the directed acyclic precedence graph
with ↝ edges. In both models, multiple stores visible from a single load are resolved non-
deterministically. Our model further states that consistency is not decidable when there
exists a store that is not ordered with a load, whereas Cilk leaves this topic unspecified.

Also, our system extends the Cilk model by defining communication across consistency
domains. This extension preserves the simplicity of defining consistency based on the de-
pendency graph, but requires to enclose reads and writes to memory between a, b and p
communication operations.

1http://golang.org/doc/go_mem.html

http://golang.org/doc/go_mem.html

134 CHAPTER 7. DISENTANGLING MEMORY AND SYNCHRONIZATION

7.8.3 Communication granularity, comparison with CAF / UPC

In [CDMC+05], the authors study Co-Array Fortran (CAF) and Unified Parallel C (UPC)
as two languages that offer SPMD over a global address space. Their primary statement is
that:

[...] CAF and UPC programs deliver scalable performance on clusters only when
written to use bulk communication. However, our experiments uncovered some
significant performance bottlenecks of UPC codes on all platforms. We account
for the root causes limiting UPC performance such as the synchronization model,
the communication efficiency of strided data, and source-to-source translation
issues. We show that they can be remedied with language extensions, new syn-
chronization constructs, and, finally, adequate optimizations by the back-end C
compilers.

The solution the authors propose to optimize communication is twofold. The first is to
adapt the granularity of synchronization to the actual functional requirement of programs,
i.e. minimize the scope of synchronization and avoid barriers. This is present in our system
already since all synchronization is explicitly scoped by default.

The other solution is to group individual accesses to memory into bulk communication
of entire chunks of memory. Then they suggest directions to partly automate this process
and synthesize bulk transfers:

We believe that developing effective compiler algorithms for synchronization
strength reduction is appropriate. However, we also believe that having point-
to-point synchronization available explicitly within the languages is important
to avoid performance loss when compiler optimization is inadequate. [...]

The SL constructs for synchronization using explicit dataflow channels, and our choice
to expose the b, p and a operations for consistency, go along with this suggestion.

7.8.4 ZPL’s Ironman interface

ZPL [Cha01] was a precursor to Chapel [CCZ07] designed at the University of Washington.
The designers of ZPL were already highly concerned by issues of memory consistency over
weakly coherent systems and distributed memories. Like us, they were interested to both
support distributed memory and automate the elision of communication primitives when
communication partners were running in the same memory domain. Their solution was
the Ironman interface, introduced in [CCS98] and detailed in [Cha01, Chap. 4]. As we do
in section 7.3, this interface proposes abstract primitives for use in the code generated by
compilers; the primitives are then projected to different implementations in the run-time
environment depending on the underlying communication infrastructure. The primitives in
Ironman are, on the writer side:

SR (Source Ready) : The values at the source processor will not be written again prior
to transfer. The source processor is now ready to begin the data transfer.

SV (Source Volatile) : The data at the source processor is about to be overwritten.
Execution cannot continue until the transfer is completed.

Our proposed p operation combines the function of Ironman’s SR and SV operations.
The primitives on the reader side are:

7.8. OTHER RELATED WORK 135

DR (Destination ready) : The locations at the data destination will not be used again
until the transfer has completed. The destination processor is now ready to accept
data from the source processor.

DN (Destination Needed) : The values at the data destination are about to be read.
Execution cannot continue until the data from the source processor has been received.

Our proposed a operation combines the function of DR and DN.
The Ironman primitives are designed to facilitate the overlap of communication with

computation, by separating issuing a communication operation from completing it. As such
they are similar to e.g. MPI’s asynchronous send/receive APIs; their difference with an
API is that they can be elided at run-time by direct shared memory synchronization if the
communication endpoints are close to each other.

These primitives further assume that any address in the local address space can serve
as communication buffer. In particular, they does not offer a handle on system that require
buffers to be allocated in a dedicated memory space, like our b and a operations do.

Summary

Abstract machines establish a contract between a platform provider and the designers of
higher-level abstractions, including programmers. This should be provided and detailed, so
as to create an abstraction interface where external observers can reason about program
semantics independently from specific implementations.
In our work, we have designed such an abstract machine to describe the semantics of the◻
platform introduced in part I and chapter 5. The abstract machine describes dataflow
synchronization and establishes memory consistency as a derived property of the directed
acyclic graph of the scheduling order in programs. It also introduces “communication and
consistency domains” to expose different kinds of implicit communication using hierarchical
shared memory systems. We have postulated that the new concurrency semantics added▷
to the latest revisions of the C and C++ standards can be emulated using the proposed
abstract machine.

Chapter 8

Configuration of the visible synchronizer
window
—Highlight on specifics, opus 1

Abstract

Some architectural innovations may be eventually invisible to application developers
and thus not part of the “advertised” main features of a design. Yet they may signifi-
cantly impact issues under control of operating software providers, and thus must be
fully described for this audience. The proposed machine interface from chapter 4 illus-
trates this. In traditional register machines, the number of register names available for
use in programs is fixed by the ISA definition. In our case, the code generator that pro-
duces the machine code can choose the number of register names available for use: as
per sections 3.3.3 and 4.3.3, the hardware dynamically maps register names to physical
synchronizers. The set of mapped synchronizers constitutes a “visible window” from
the perspective of individual threads. A lower requirement on the number of available
register names enables more compact use of the synchronizing storage, potentially more
thread contexts active, and thus potentially better opportunities for latency tolerance.
In this chapter, we describe to operating software providers how a code generator can
configure the layout of the visible window.

Contents
8.1 Introduction . 138
8.2 Formalism . 138
8.3 General constraints . 139
8.4 Degree of freedom from register allocation . 140
8.5 Strategies for synchronizer mapping . 141
Summary . 146

137

138 CHAPTER 8. VISIBLE SYNCHRONIZER WINDOWS

8.1 Introduction

The machine interface in chapter 4 allows software to configure a separate register window
layout for each thread program. Specifically, a code generator must produce a triplet of
values G, S, L in the machine code for each thread program. These specify the number of
synchronizers that must be made available by the architecture at run-time before execution
of the thread program starts; respectively, the number of “global” synchronizers visible from
all thread contexts, the number of “shared” synchronizers shared by adjacent contexts, and
the number of “local” synchronizers private to each context (cf. figs. C.1 and C.2 for an
example). These values are constrained only by the equation G + 2S + L ≤ M , where M is
the total number of register names available for use by programs in the ISA, commonly 31.
The question thus arises of how to determine these values.

We have explored multiple strategies. In this process, we determined the general upper
and lower bounds on these values, as well as the design spectrum of possible solutions,
which we describe. Our implementation uses the outcome of our findings, described below.
We distinguish in our text further between “synchronizers,” which are the physical units
of storage, and “register names,” which are the addresses used as operands in machine
instructions.

8.2 Formalism

We start by formalizing as follows:◻

• we define the set P of all machine representations for thread programs on the archi-
tecture, and

• the set F of all machine representations for regular functions (which can be called
from a thread, not executed as a family of threads).

• Then for any P ∈ P we can define:

– L(P), the number of register names reserved as local synchronizers in the declared
interface (cf. section 4.3.3);

– G(P), the number of register names used for incoming “global” channel endpoints
(cf. section 4.3.3.2);

– S(P), the number of register names used for outgoing “shared” channel endpoints
(cf. section 4.3.3.3);

– R(P), the highest register name actually used as local synchronizer in P (R ≤ L);
– Dc(P) ⊂ P, the set of thread programs that are used as the target of family

creation in P ;
– Df(P) ⊂ F , the set of functions called directly from P ;

• and for any F ∈ F we can define:

– R(F), the highest register name actually used as local synchronizer in F ;
– Dc(F) ⊂ P, the set of thread programs that are used as the target of family

creation in F ;
– Df(F) ⊂ F , the set of functions called directly from F .

8.3. GENERAL CONSTRAINTS 139

• We also define D∗

f(x) ⊂ F , the set of all functions called transitively from x (from
either P or F), defined by:

D0
f(x) =Df(x)

Dn+1
f (x) = {Df(y)∥y ∈Dn

f (x)}
D∗

f(x) = ⋃n→∞Dn
f (x)

(This set is finite on any actual implementation of the architecture due to the finiteness
of the address space)

8.3 General constraints

From the definitions above, we are able to formulate the following constraints on G, S and◻
L:

1. outer interface fit :
∀P ∈ P G(P) + 2S(P) +L(P) ≤M

This denotes that the window specification must fit the maximum size in the substrate
ISA. The factor 2 for S comes from the fact that there are two sets of “shared”
synchronizers: those shared with the previous context and those shared with the next
context (cf. figs. C.1 and C.2).

2. required lower bound for calls:

∀F ∈ F

(max
F ′∈D∗

f
(F)

R(F ′)) ≤ R(F)

∀P ∈ P

(max
F ∈D∗

f
(P)

R(F)) ≤ R(P) ≤ L(P)

This denotes that must be enough private synchronizers to allow the code of any
directly and indirectly called functions to run within the same context.

3. required lower bound for creations, in interfaces with “hanging” synchronizers (sec-
tion 4.3.3.3):

∀P ∈ P

(max
P ′∈Dc(P)

(G(P ′) + S(P ′) + 1)) ≤ R(P) ≤ L(P)

∀F ∈ F

(max
P ′∈Dc(F)

(G(P ′) + S(P ′) + 1)) ≤ R(F)

This denotes that there must be enough private synchronizers to serve as channel
endpoints for all the created families.

140 CHAPTER 8. VISIBLE SYNCHRONIZER WINDOWS

REGISTER
ALLOCATIONA

number of available
register names

RTL with
unbounded virtual

registers

Machine
code with
fixed register names

R
number of actually
used register names

Figure 8.1: Register allocation as a function of the number of available register names.

 0

 5

 10

 15

 20

 25

 30

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

N
um

be
r o

f r
eg

is
te

r n
am

es
 e

ffe
ct

iv
el

y
us

ed
 (R

)

St
ac

k
sp

ac
e

re
qu

ire
d

(w
or

ds
) /

 n
um

be
r o

f i
ns

tru
ct

io
ns

Number of register names available to register allocation (A)

Number of non-memory instructions
Number of memory stores
Number of memory loads

Stack space required (words)
Number of effectively used register names

Figure 8.2: Effect of various numbers of available register names on the outcome of register
allocation with a simple function updating a variable in memory.

4. required lower bound for creations, in interfaces with “separated” synchronizers (sec-
tion 4.3.3.3):

∀P ∈ P { 0 ≤ R(P) ≤ L(P) if Dc(P) = ∅
1 ≤ R(P) ≤ L(P) otherwise.

∀F ∈ F { 0 ≤ R(F) if Dc(F) = ∅
1 ≤ R(F) otherwise.

8.4 Degree of freedom from register allocation

We focus here on the distinction between the number of available register names, which is
the value declared with L, and the number of effectively used register names R in a given
machine representation.

To understand their relationship, we must consider how register allocation works in a
compiler. To summarize, a compiler considers the maximum number of simultaneously ac-
tive local (C’s “automatic”) variables in a function body, together with intermediate results
in expressions, and deduces the required number of frame slots N for a function or thread
program body. N is independent of the target architecture configuration. Then the vari-
ables that are most used are mapped onto A available register names, where A is typically
configurable. We illustrate the functional nature of register allocation in fig. 8.1.

8.5. STRATEGIES FOR SYNCHRONIZER MAPPING 141

If N ≤ A, then R = N ≤ A register names are used. If N ≥ A, then R = A register names
are used and the code generator inserts extra instructions to save and restore value slots
to and from memory. We illustrate this in fig. 8.2, where a single C function performing
arithmetic on an array is processed through various values of A. Traditionally, A is fixed by
subtracting a number of “reserved” names (e.g. stack pointer) from M . It then becomes an
architectural constant valid for all code generators on that architecture. For our architecture,
we can choose both L and A, with the constraint that A ≤ L ≤M −G − 2S.

In short, next to G, S and L there is an additional degree of freedom A which is an input
to code generation.

8.5 Strategies for synchronizer mapping

We considered only strategies for synchronizer mapping that account for separate compila-◻
tion, that is, a given thread program or C function may be compiled without knowing the
definition of all other thread programs or functions that it composes through family creation
or C function calls. We acknowledge that there exist other strategies when all the program
source is visible during code generation, but we decided early on to focus first on providing
a platform where separate compilation is possible.

With separate compilation, any strategy to compute a synchronizer mapping for a func-
tion needs to account for the possibility that the resulting machine code may be composed in
a yet unknown program context. This requires any strategy to select G and S using only the
prototype declaration of the thread program being considered, since this is the only infor-
mation available from another translation unit during separate compilation. In particular,
it is not possible to choose G and S as a function of L, since L will not be known in another
translation unit while G and S will be required to generate code for family creations.

Furthermore, to ensure compilation soundness, the strategy should not cause a valid
program composition in the semantics of the source language to have no valid representation
in the machine code.

We considered first the numbers Gs and Ss of “global” and “shared” channel endpoints
defined in the program source. Then we considered the simplest possible strategy, i.e. use
G = Gs, S = Ss, then choose A = L = M − G − 2S. There are three problems with this
strategy. To understand why, we first distinguish fitting programs where Gs + 2Ss ≤M and
overflowing programs where Gs + 2Ss >M . Then:

1. The strategy is “synchronizer-greedy,” since a simple thread program which may only
use a few synchronizers and channel endpoints will still end up reserving allM register
names from the architecture.

2. The strategy is not sound. There are two situations:

• with “hanging” synchronizer mappings (section 4.3.3.3), once a fitting program
P1 is compiled, it becomes impossible to separately compile another program P2

which creates a family running P1 if G(P1)+S(P1)+1 ≥M −G(P2)−2S(P2), even
though P2 on its own may be fitting. In other words, this strategy establishes
that whether a thread program can be used to create a family is a function of the
interface of the creating thread.

• with “separated” synchronizer mappings, once a fitting C function F is compiled
(R(F) ≤ M), it may be impossible to separately compile a thread program P
which calls F if R(F) ≥ M − G(P) − 2S(P), even though P on its own may

142 CHAPTER 8. VISIBLE SYNCHRONIZER WINDOWS

be fitting. (The difference with the previous argument is that it is now plain C
function calls, instead of thread creations, that defeat soundness.)

3. The strategy requires the code generator to reject overflowing programs. This is unsat-
isfactory, because it requires the programmer to knowM to decide whether a program
is valid, and it establishes a lower bound onM for future architectural changes as soon
as a program is written.

We addressed these problems in turn, as described below, to establish the strategy we
finally used in our implementation.

8.5.1 Minimizing the number of local synchronizers

To solve the first problem, we can choose A = M −G − 2S first, let register allocation run◻
and use the resulting R as a value for L (this is possible since R ≤ A). The alternative is
choosing A <M −G− 2S, to reduce the mandatory synchronizer cost of the thread program
even further. However, as seen in the previous section, when A becomes smaller, the code
generator must introduce extra memory load and store instructions for spills. This means
that using A to control the synchronizer cost is effectively a trade-off between this cost and
memory access penalties. To distinguish the benefits and drawbacks, we must therefore look
more closely at the hardware implementation:

• in an interleaved multithreaded execution (one pipeline, one synchronizer store), adding
memory operations is always a penalty, even if all memory latencies can overlap with
useful computations, because the total number of executed instructions increases. In
this situation, the largest value A =M −G−2S should be used to minimize the number
of memory accesses in all cases.

• in a simultaneous multithreaded execution (multiple pipelines sharing one synchronizer
store), A should be reduced so that there can be enough threads to keep all functional
units busy and also tolerate the latencies of the added memory latencies.

Since the implementations we used have one in-order pipeline per synchronizer store, we
choose A =M −G − 2S accordingly.

8.5.2 Ensuring sound composition

8.5.2.1 Case with “hanging” synchronizer mappings

We consider first “hanging” synchronizer mappings as introduced in section 4.3.3.3. In this◻
case, any upper bound for G and S for a given program P becomes a lower bound on the
choice of L for any other program that wishes to create a family running P . A lower bound
on L is in turn an upper bound on G and S in that other thread. Since any solution must
ensure compatible values of G, S and L for family compositions across separate translation
units, we must establish a fixed point for the upper bound on G and S, and the lower bound
on L. Let us call this fixed point X. By definition, ∀P ∈ P G(P) + 2S(P) ≤ X and
G(P) + S(P) + 1 ≤ L(P) ≤M −X.

Furthermore, X must be independent from specific program sources, since X must be
known by convention across all separate compilations. This means that X can be chosen
arbitrarily. Once the fixed point is chosen, we can deduce from X the upper bounds on G,
S and L as per the definition above.

8.5. STRATEGIES FOR SYNCHRONIZER MAPPING 143

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30
al

lo
w

ab
le

 v
al

ue
s

fo
r

G
/S

/L
values of X

maximum allowable value for G
maximum allowable value for S
maximum allowable value for L

Figure 8.3: Maximum allowable values of G, S, L for various values of X, with M = 31.

Configurations suitable for “hanging” synchronizer mappings, as per section 4.3.3.3.

Since register allocation benefits from large values of L, and inter-thread communication
benefits from large values of G and S (more asynchrony), we are thus interested to choose
X in a way that maximizes L, G and S. To clarify, we plotted in fig. 8.3 the upper bounds
for all values of X with M = 31. As can be seen in this diagram, all values of X below 15
enable more communication endpoints at the expense of local synchronizers. Values between
15 and 20 allow more “shared” channel endpoints at the expense of both “global” channel
endpoints and local synchronizers. Values above 20 restrict all three values further.

The optimization of X would require empirical results across a set of applications. In-
deed, a low value of X can require inter-thread communication to occur more often via
memory instead of the architecture’s dedicated channels, while a high value of X can re-
quire more spills to memory due to a smaller number of private synchronizers. The best
trade-off for a given application depends on the source code of the entire application and
how program components are composed together; the best trade-off for an entire application
domain requires empirical evaluation across the entire domain.

Without considering a specific application domain, we made X configurable and set it
by default to X = 12. We motivated this default value as follows. First we observed that
a prospective user of our technology, the SAC2C compiler for Single-Assignment C [GS06],
was structured to make heavy use of common loop variables, which would be translated
to “global” channel declarations in our interface language. This suggested maximizing the
upper bound on G, and thus choosing the largest possible value of X while keeping X ≤ 15.
Then we observed that the calling conventions for procedure calls on existing general-purpose
processors with RISC ISAs often choose to use 4 to 8 register names to argument passing
(table 8.1), plus 6 to 12 “scratch” caller-save register names for temporary variables. Then
we deduced from this observation that the designers of these calling conventions must have
empirical knowledge that this is an optimal trade-off to support C functions and calls in
general-purpose workloads. So we adopted this requirement in our setting, and we deduced
the constraint L ≥ 18, hence X = 12.

Once X is set, the resulting code generation strategy can be summarized as follows: first
set G and S from Gs and Ss while ensuring G + 2S ≤ X; then run code generation with
A = X, and finally set L = R after code generation. This is the implementation we describe
in Appendix H. The procedure calling convention within threads is left unchanged from the
substrate ISA.

144 CHAPTER 8. VISIBLE SYNCHRONIZER WINDOWS

ISA ABI Integer arg. regs. FP arg. regs.
PowerPC (all) 3-10 33-40
Alpha (all) 6 6
SPARC32 System V, Sun 6 0
SPARC64 Sun 6 16
MIPS32/64 “old” 4 2
MIPS32/64 “new” 8 8
ARM Standard [ARM09] 4 8
x86-64 Unix 6 8
x86-64 Microsoft 4 4

Table 8.1: Calling conventions on existing general-purpose processors.

Information extracted from the GNU CC target machine configurations.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

al
lo

w
ab

le
 v

al
ue

s
fo

r
G

/S
/L

values of X

maximum allowable value for G
maximum allowable value for S
maximum allowable value for L

Figure 8.4: Maximum allowable values of G, S, L for various values of X, with M = 31.

Configurations suitable for “separated” synchronizer mappings, as per section 4.3.3.3.

8.5.2.2 Case with “separated” synchronizers

We consider here “separated” synchronizer mappings as per section 4.3.3.3. Any upper bound◻
for A (or R) for a given C function F becomes a lower bound on L for a program P that
wishes to call F . A lower bound on L is in turn an upper bound on G and S in P . Since any
solution must ensure compatible values on G, S, L and R for function calls across separate
translation units, we must establish a fixed point for the upper bounds on G and S, and the
lower bound on L. Let us call this fixed point X. By definition, ∀P ∈ P G(P)+2S(P) ≤X
and 1 ≤ L(P) ≤M −X.

As described before, X must be known by convention, and once known it can be used
to derive L, G and S in thread programs, and A (or R) in C functions. As before, we are
interested to choose X in a way that maximizes L, G, S, and R for C functions. With the
new constraint, we plotted in fig. 8.4 the upper bound for all values of X with M = 31. As
can be seen in this diagram, increasing X allows for more channel endpoints as the expense
of local registers.

Again, the optimization of X requires empirical data across a target application domain.
The trade-offs remain unchanged, as well as the methodology. We thus felt justified to reuse
the same semi-arbitrary choice of X = 12 in our setting, for the same reason as above. This
allows us to keep the previous decision strategy for G, S and L unchanged.

8.5. STRATEGIES FOR SYNCHRONIZER MAPPING 145

1 sl_def (foo , sl_glparm (T1 , N1) , . . . sl_glparm (Tn , Nn)) {
2 . . . sl_getp (N1) . . . sl_getp (Nn) . . .
3 } ;
4 . . .
5 {
6 sl_create (. . . , foo , sl_glarg (T1 , N1 , Vn) ,
7 . . . sl_glarg (Tn , Nn , Vn)) ;
8 sl_sync () ;
9 }

Listing 8.1: Code fragment using multiple virtual “global” channels.

1 struct foo_i { T1 N1 ; . . . Tn Nn ; } ;
2 sl_def (foo , sl_glparm (struct foo_i ∗ , __mp)) {
3 . . . sl_getp (__mp)−>N1 . . . sl_getp (__mp)−>Nn . . .
4 } ;
5 . . .
6 {
7 struct foo_i __mp = { V1 , . . . Vn } ;
8 sl_create (. . . , foo , sl_glarg (struct foo_i ∗ , , &__mp)) ;
9 sl_sync () ;
10 }

Listing 8.2: Translation of listing 8.1 to use only one “global” channel.

Note that we use here the constraint between X, G and S stemming from program
composition via C function calls under separate compilation, whereas the constraint we
used in section 8.5.2.1 stemmed from composition via thread creations. The reason why we
did not use the same constraint in both sections is that the constraint from composition via
thread creation is more restricting with “hanging” synchronizer mappings, whereas it is less
restricting with “separated” mappings.

8.5.3 Handling overflowing programs

The last problem was dealing with programs where the number of expressed channel end-◻
points is too large for the code generation constraints. In our case, with X = 12, we can use
at most 12 hardware endpoints for “global” channels directly, or 6 endpoint pairs for “shared”
channels, or any combination where G + 2S ≤ 12. We could propagate these constants to
the input language definition, and thus make programmers (or code generators) aware of
this hardware limit and accept the invalidity of overflowing programs as a design choice;
however, an additional improvement is possible.

Indeed, we can reuse the strategies from [JR81] to support virtual inter-thread channels
on the new architecture. With only one physical “global” channel endpoint, it is possible to
emulate a virtually unbounded number of other “global” channel endpoints by storing the
source values in memory instead. For example, the program fragment in listing 8.1 can be
replaced by listing 8.2 without any changes in semantics. In general, any number of “global”
endpoints declared in source can be mapped to G ≥ 1 endpoints in hardware, where the first
G− 1 hardware endpoints are mapped directly to program-specified endpoints, and the last

146 CHAPTER 8. VISIBLE SYNCHRONIZER WINDOWS

endpoint in hardware is mapped to a pointer to a data structure in memory that contains the
source values for the other program-specified endpoints. We call this method escaping the
channel source values into memory, because it trades physical hardware channels for memory
capacity. When we use escaping, no value of Gs causes the program to be overflowing as
soon as G ≥ 1 is allowed by X. We actually implemented this method in our solution.

The method can be further extended to “shared” channels by reserving a data structure
in memory in each logical thread in a family to hold the source values for the next logical
thread.

However, here a difficulty arises. We cannot translate multiple individual uses of sl_setp
that manipulate different virtual “shared” channel names to multiple uses of sl_setp that
manipulate the same hardware channel endpoint. This is because the machine interface
does not allow us to reset the synchronization state of the channel, i.e. we must assume the
channel only synchronizes once. This requires us to replace all escaped uses of sl_setp by
non-synchronizing memory assignments, and also add a single use of sl_setp at the earliest
point of the control flow graph that is guaranteed to run after all the memory assignments.

Unfortunately, this would be a program transformation that requires semantic analysis of▷
the program source, which is outside of the scope of the framework we discussed in chapter 6.
For this reason, we originally chose to not extend the method to “shared” channels in our
implementation. Then we realized that there exists an alternative, to add the trailing
sl_setp at the end of the control flow graph, i.e. at the end of the function body and at
every use of return. This would be a suitable context-free substitution. The drawback of
this method is that it over-synchronizes by forcing the sequentialization of all participating
threads. If proper virtualization of “shared” channels is desired, this technique could be
added to our implementation at a low cost. The reason why we did not yet implement this
solution is suggested in section 13.8.

Our resulting implementation can be summarized as follows:

• in the language specification (Appendix I, clause I.4.2§2), we guarantee support for
1271 “global” channel endpoints and 1 “shared” endpoint pair;

• in the actual implementation, the number of “global” endpoints is effectively bounded
only by the memory available to the creating thread, and the number of “shared”
endpoint pairs is indirectly bounded by X, to 6 pairs in our case; however, we do not
advertise this value so as to enable other implementation-dependent choices for X.

Summary

Variably sized visible windows influence register allocation during code generation. To enable
separate compilation, a static limit must be set on the number of register names available
to register allocation in code generators for local variables, which in turn constrains the
number of register names available to define synchronization channel endpoints.
In this chapter, we have formalized the possible trade-offs in this choice. We then described◻▷
how to virtualize an arbitrary number of logical channels defined in programs over a fixed set
of register names in the ISA. The result is a configuration strategy that is mostly invisible
from the perspective of the C programmer or higher-level code generator.

1For symmetry with the limits on the number of function arguments in [II99, 5.2.4.1§1] and [II11b,
5.2.4.1§1].

Chapter 9

Thread-local storage
—Highlight on specifics, opus 2

Abstract

Some functional requirements of operating software providers may be both invisible
to hardware architects and invisible to application developers; they may exist to support
the generality of the operating software or its reusability across platforms. From the
hardware architect’s perspective, an opportunity exists to learn about these require-
ments and optimize a design accordingly. For example, Thread-Local Storage (TLS) is
a necessary feature of run-time environments when threads must run general-purpose
workloads. This is fully under the responsibility of the operating software, as TLS
is “just memory” from the hardware provider’s perspective, and assumed to pre-exist
by application developers. Meanwhile, on a massively concurrent architecture which
encourages the creation of many short logical threads in hardware, such as the one
introduced in part I, provisioning TLS via traditional heap allocators would be largely
detrimental to performance and efficiency due to contention and over-allocation. In this
chapter, we show the gains to be obtained by co-designing support for TLS between
the hardware architect and the operating software provider. We provide an analysis
of the requirements to provision TLS on such architectures and a review of the design
space for solutions. We illustrate with our own implementation.

Contents
9.1 Introduction . 148
9.2 “Traditional” provisioning of TLS . 148
9.3 Smarter provisioning of TLS . 150
9.4 Implementation . 151
9.5 Integration with the machine interface . 159
Summary . 160

147

148 CHAPTER 9. THREAD-LOCAL STORAGE

9.1 Introduction

A C compiler for most register-based machines uses a stack pointer for two purposes:

• to allocate and access function activation records1.
• when using the commonly-supported C extension “alloca” or [II99]/[II11b]’s vari-
ably sized arrays scoped to a function body, to perform the corresponding dynamic
allocation at run-time.

In addition to this, most existing C compilers support the notion of “thread-local vari-
ables,” declared with a special storage qualifier (“thread” or similar), and which are guar-
anteed to designate, at run-time, a different object in each thread whose initial value in each
thread is the initial value defined in the program at the point of definition. This definition
has been captured in the latest specifications [II11a, II11b]. The implementation of this
feature is based on a “thread local storage template” generated by the compiler statically,
and passed by reference to each newly created thread to be duplicated in a thread-local
memory.

Activation records, dynamic local allocation and thread-local variables define collectively
the notion of “Thread-Local Storage (TLS),” which is an area of memory that can be used by
thread program code with the assumption that no other thread will inadvertently overwrite
its values. In general terms, TLS is required for a thread to properly virtualize a general-
purpose computer with the computing abilities of a Turing machine (cf. section 1.2.1).
Conversely, an execution environment must provision TLS to claim its support for general-
purpose workloads.

In this chapter, we examine how TLS can be provisioned to threads efficiently in an
architecture with fine-grained concurrency, and how access to TLS can be gained from the
perspective of code generation.

9.2 “Traditional” provisioning of TLS

The two traditional strategies to obtain access to TLS in new threads are: dynamic pre-
allocation, before the thread starts by the creating thread, or self-allocation by the newly
created thread after it has started. With pre-allocation, a pointer to TLS can be passed as
an argument, or at a predefined location. With self-allocation, a protocol must exist so that
a thread can request the allocation of TLS.

9.2.1 Dynamic pre-allocation

Dynamic pre-allocation requires a priori knowledge of an upper bound on the TLS size. We
found an extensive analysis of this in [Gru94]. To summarize, a combination of compiler-
based analysis of the call graph in each thread program, together with a profile-directed
analysis of the actual run-time requirements, can provide a conservative estimate of this
upper bound in a large number of applications.

There are two issues with pre-allocation however. The first issue arises when a primitive
exists to bulk create many logical threads over a limited set of hardware threads, such as
presented in part I. Each logical thread potentially needs TLS. This has two consequences:

1Activation records primarily contain local variables that do not fit in registers, e.g. local arrays, and
also possibly spill space and the return address in called procedures.

9.2. “TRADITIONAL” PROVISIONING OF TLS 149

• since the mapping of logical threads to hardware thread contexts may not be visible
in software, potentially as many separate TLS spaces would need to be allocated as
there are logical threads in the family. This would cause severe over-allocation for
large logical families running over a few execution units;

• any use of pre-allocation would require two values to be passed as argument (a base
pointer and a size) and would mandate either a potentially expensive multiplication
with the logical thread index in every thread, or sizes that are powers of two, to allow
a cheaper shift operation instead.

The second issue is that pre-allocation is not an appropriate general scheme: it is unable
to provide TLS for recursion where the depth cannot be statically bound, for example data-
dependent recursions, and it cannot cater to dynamic allocation of local objects whose size
is known only at run-time. Because of this latter issue, whether pre-allocation is used or
not, a fully general system would thus need to also offer self-allocation as an option.

9.2.2 Self-allocation

Self-allocation, in contrast, seems relatively simple to implement. It suffices to emit, at the
start of every thread program that requires TLS, an invocation of a system service in charge
of dynamic memory allocation. Supposing such a service exists, we explore here how its
interface should look. There are two possible strategies. Either the service is implemented
by means of a regular procedure, which is called by branching control within the same
thread, or it is implemented as a thread program, which is accessed by creating a new
thread running that program. In both cases, some form of mutual exclusion over a shared
memory allocator is required; otherwise, the two strategies differ as follows.

The procedure-based approach requires an allocation service that can be run from indi-
vidual threads at a low cost. To keep logical thread creation lightweight, requirements such
as a privilege switch or a trap to access the service would be inappropriate. The allocator
would be a procedure that negotiates exclusive access to some data structure, determines a
range of addresses to use as TLS, and releases the data structure. For best performance this
should have a fixed, low overhead in most cases. In turn this requires minimizing non-local
communication, hence requires a pooled memory allocator with per-processor pools. This
is the approach taken by e.g. the “polo stack” allocation strategy from [Abd08, Chap. 6].

The thread-based approach creates the opportunity to delegate the allocation to some
other resource on the system. This is beneficial as the designer may not wish to equip
every processor with the hardware facilities required for a memory allocator, yet desire to
allow every logical thread to access TLS. This is of course constrained by contention: the
system must provision enough bandwidth to this service, either through faster processors
implementing the service or a larger number thereof.

Then, the service interface must guarantee that the thread creation is always possible2.
This in turn mandates that there is at least one thread context which is never automatically
used by bulk creation except for TLS allocation requests, and that the program must be able
to force the hardware “allocate” request to grab that specific context. This in turn requires
a mechanism in hardware to reserve a context permanently and an addressing scheme to
identify that context in the “allocate” operation.

2The scheme described later in chapter 10 does not apply here as it pre-requires TLS to serialize the
behavior locally.

150 CHAPTER 9. THREAD-LOCAL STORAGE

To summarize, TLS self-allocation is a viable strategy which can either be implemented
locally on each processor, or on service processors shared between multiple multithreaded
cores. It requires mutual exclusion and an allocation algorithm with an extremely low
overhead, so that thread creation stays cheap. Contention may be an issue when sharing
the service between multiple cores, a topic that we revisit later in section 14.4.

9.3 Smarter provisioning of TLS

Dynamic pre-allocation and self-allocation require the time overhead of a procedure call or
one extra thread creation and synchronization during the start-up of every logical thread.
This overhead, commonly between 50 and 200 processor cycles on contemporary hardware
(for procedure calls) or 50 cycles on the proposed architecture, does not compare favorably
with the low logical thread activation overhead on the reference implementations of our new
architecture (less than 5 processor cycles per logical thread). Moreover, since the machine
interface does not guarantee that the values of the local synchronizers persist across logical
threads sharing the same thread context, it would be necessary to either design a new
architectural mechanism to carry the TLS pointers from one logical thread to the next, or
invoke the allocation service in every logical thread, not only the first. We present two
alternative strategies, presented below.

9.3.1 Persistent dynamic allocation

The first strategy we considered preserves a TLS range across logical threads sharing the◻
same thread context. In this approach, each thread context retains, next to the program
counter, a base pointer for the area of TLS reserved for all logical threads sharing the context.
This is a valid approach since all logical threads execute in sequence without interleaving
(sections 3.3.1 and 4.2). When the first logical thread in a family starts in a context, it
checks this base pointer, and performs an initial allocation if the base pointer is not yet
configured. All subsequent logical threads in the same context can reuse the same TLS3.

Here there are two storage reclamation strategies: aggressive reclamation, where TLS is
de-allocated as soon as the context is released, and delayed reclamation where TLS remains
allocated between families.

To enable aggressive reclamation, either a hardware process, or the thread synchronizing
on termination of a family, would explicitly de-allocate all the TLS areas allocated for each
thread context effectively used by the family. This has linear time complexity with the
number thread contexts used for the family per core, and is independent of the logical
thread sequence which is typically larger. The cost of allocation is then repeated for each
new created family.

With delayed reclamation, TLS space is reused across families: the cost of allocation is
factored at the expense of possible over-allocation. There is a spectrum of implementation
strategies. Asynchronous Garbage Collection (GC) of TLS areas for inactive thread contexts
is possible if the application code guarantees no sharing of TLS data between threads.
Otherwise, synchronous GC can be used, or the operating system can reclaim storage when
the entire program terminates.

3We assume here that all threads have the same TLS size requirements. Otherwise, the size should be
stored alongside the base pointer, compared upon thread startup, and the TLS should be reallocated when
a new size is desired.

9.4. IMPLEMENTATION 151

9.3.2 Context-based pre-reservation

We pushed the concept of persistent allocation with delayed reclamation further: we explored◻
more static schemes where TLS space is pre-allocated for all thread contexts on a group of
processors before a software component is assigned to this group.

To optimize this situation, we propose to allow a logical thread to construct a pointer to
a region of TLS from the identity of the thread context where the logical thread runs. We
experimented with multiple implementations, with various trade-offs between the latency
benefit and the cost of the required extra logic. We determined two orthogonal design deci-
sions: how the space is allocated from shared storage, and how the addresses are distributed
to threads.

Regarding allocation, we found two implementable strategies:

• static pre-allocation: a predetermined amount of storage is allocated for each thread
context. This is suitable if pre-allocation is possible, i.e. when there are known upper
bounds on TLS size and the provision of TLS for all contexts fits in the available
storage;

• deferred pre-reservation using virtual addressing: a predetermined number of virtual
addresses are reserved for each thread context, then storage is allocated on-demand
when the addresses in the TLS areas are first used. Although this scheme also bounds
the amount of TLS via the number of addresses reserved, it is possible to make this
bound so high that the addresses available to each thread context would be sufficient
to address the entire physical storage.

Regarding distribution, we found two implementable strategies:

• external distribution: a table exists in the system, indexed by the logical processor
identifier and thread context identifier of each thread, which can be configured to
contain a different address and size for TLS for every thread context. This table can
reside in main memory with a base address determined by convention, or in dedicated
memory structures on chip next to each processor;

• computed distribution: a common base pointer and TLS size are accessible to multiple
thread contexts by convention, and can be configured in software. In each thread, the
program can compute a private area of TLS by multiplying a combination of its logical
processor identifier and thread context identifier with the common size, and adding
this to the common base pointer. The pair (base pointer, size) can be shared by all
processors in the system, or configurable by processor.

We summarize the trade-offs of these four combinations in table 9.1.
The external/static and external/deferred schemes are the schemes used in most existing

general-purpose operating systems to implement processes and threading. For example in
GNU/Linux, Solaris and BSD each system thread is allocated a range of virtual addresses
as stack, which is populated on demand while the thread runs. In uCLinux for embedded
systems without virtual addressing, processes receive a dedicated subset of the physical
memory as TLS.

9.4 Implementation

We did not implement dynamic pre-allocation in our technology (cf. chapter 6). We also did
not thoroughly explore self-allocation or any scheme requiring mutual exclusion, including

152 CHAPTER 9. THREAD-LOCAL STORAGE

Distribution
External Computed

A
llo

ca
ti
on

St
at
ic Thread contexts compete for a sub-

set of the physically available mem-
ory, but heterogeneous sizes are pos-
sible.
Time-expensive to pre-configure (lin-
ear in the number of contexts), cheap
in logic (needs access only to the con-
text identifier).

All thread contexts compete equally
for a subset of the physically available
memory.
Cheapest in time and extra logic to
pre-configure (constant time, needs
access only to the context identifier),
least flexible for software.

D
ef
er
re
d Thread contexts compete for a subset

of the virtual address space, and het-
erogeneous address windows are pos-
sible.
Most time-expensive and logic-
expensive to pre-configure (linear
in the number of contexts, requires
virtual addressing and handling of
translation faults), most flexible for
software.

All thread contexts compete equally
for a subset of the virtual address
space.
Cheap in time to pre-configure (con-
stant time), expensive in extra logic
(requires virtual addressing).

Table 9.1: Trade-offs of context-based TLS partitioning

Side note 9.1: Support for heap-based dynamic allocation.
Although we did not study self-allocation for obtaining TLS space in threads, we did not deliberately avoid
dynamic memory allocation altogether. Indeed, our software integration work eventually included a two
stage allocator into the standard C library available to programs, to support the “malloc” API. This
allocator handles small sizes locally using binned allocation of fixed sizes chunks in TLS-based “local heaps,”
and delegates allocation of larger sizes centrally by an off-the-shelf allocator using mutual exclusion, Doug
Lea’s dlmalloc [Lea96]. Our allocator is available publicly with our SL software.

persistent dynamic allocation from section 9.3.1. We made this decision for two reasons.
First, as highlighted at the start of section 9.3, the overhead of dynamic allocation is high
compared to the latency of thread creation, and we were interested in exploring strategies
that provide TLS at lower latencies. Then, the system implementation we had at our disposal
did not provide facilities for mutual exclusion until a much later phase, where our techniques
from section 9.3 were already implemented and demonstrated to perform adequately.

Considering the context-based pre-reservation schemes from section 9.3.2, we also avoided
the schemes based on external distribution. We made this choice because we were focus-
ing on parallel execution over large numbers of processors, and we predicted that external
distribution would incur large pre-configuration costs every time a group of processors is
recycled between benchmark applications.

Instead, during our work we explored the two remaining context-based schemes that we
have identified: static/computed and deferred/computed. We found them attractive because
they are simple to implement and the computed access to TLS makes the preconfiguration
costs scalable to large numbers of processors and thread contexts.

9.4. IMPLEMENTATION 153

Physical RAM
reserved for TLS

Number of
processors

Contexts per
processor

TLS size

256 KiB 1 64 4 KiB
16 MiB 1 64 256 KiB
256 KiB 8 8 4 KiB
16 MiB 8 8 256 KiB
1 GiB 8 8 16 MiB
256 KiB 64 64 64 B
16 MiB 64 64 4 KiB
1 GiB 64 64 256 KiB

Table 9.2: TLS size per thread with the static/computed scheme.

9.4.1 Static/computed partitioning

The first scheme we implemented was a context-based, static computed partitioning of the
address space. In this scheme, the operating system allocates a fixed subset of the physical
RAM and divides it equally across all thread contexts. This scheme does not allow the
TLS space of a thread context to be expanded, with the same drawbacks as presented in
section 9.2.1.

We present possible configurations in table 9.2. As can be seen in this table, the stat-
ic/computed strategy does not scale well for larger numbers of processors and/or thread
contexts per processor. It incurs significant wasted storage space, caused by different TLS
requirements between logical threads: the common size must be large enough to cater to
the highest requirement, which is typically uncommon at run-time. The amount of wasted
space increases with the number of processors and/or the number of contexts per processors.

Nevertheless, this was the scheme eventually used to test the UTLEON3-based plat-
form [DKK+12], as this implementation contains only 1 core.

9.4.2 Deferred/computed partitioning

The second scheme we implemented was context-based, deferred/computed partitioning of
the address space with virtual addressing. We made the assumption that the entire system
shares a single virtual address space, i.e. that the same address translation unit is used by
all processors and the inter-processor memory network uses virtual addresses. Then we used
the following address format for TLS:

MSB LSB
1 P P P T T T - - . . . -

In this scheme, a thread can construct a valid address for its TLS area by setting the Most
Significant Bit (MSB), then concatenating its logical processor index and thread context
index in the most significant bits of the address. Since this information is already present in
each processor’s pipeline to support scheduling, this value can always be constructed cheaply
(one or two pipeline cycles). The lower half of the address space (with the MSB unset) stays
available for common data, code, shared heaps, system data structures, etc.

We document the maximum allowable TLS size per thread under various architecture
configurations in table 9.3. Despite the static address space reservation, with 64-bit ad-
dressing there is sufficient address space capacity in each thread to potentially address the

154 CHAPTER 9. THREAD-LOCAL STORAGE

Number of
address bits

Number of
processors

Contexts per
processor

Maximum TLS
size

32 8 8 32 MiB
32 64 64 512 KiB
32 1024 256 8 KiB
64 64 64 2 EiB
64 1024 256 32 PiB
64 1024 1024 8 PiB

Table 9.3: Maximum possible TLS sizes with the deferred/computed scheme.

8 2 D 2 8 0 0 0 0 0 0 0 0 1 1 8

9 A 4 6 8 0 0 0 0 0 0 0 0 6 1 2

8 2 C 6 C 0 0 0 0 0 0 0 0 1 0 4

8 B C C C 0 0 0 0 0 0 0 3 0 5 4

Core 22, context 148

Core 210, context 52

Core 22, context 54

Core 94, context 102

memory bank
conflict

cache line
conflict

Figure 9.1: Potential bank and line conflicts with 64-bit addresses, 1024 cores, 256 contexts
per core.

entire capacity of contemporary physical RAM chips. With 32-bit addressing however, this
scheme is restrictive except with very few thread contexts overall.

While this scheme is transparent to use in programs, we found three significant issues at
the level of system integration: cache and bank conflicts, Translation Lookaside Buffer (TLB)
pressure and storage reclamation.

9.4.2.1 Cache and bank conflicts

Since most threads use only a small part of their TLS area, from the perspective of the
memory system, most accesses are made to addresses that differ only via their most and
least significant bits. Meanwhile, most common designs for bank and cache line selection in
hardware select banks based on a tag computed with the middle bits of the address, which
will be mostly identical between all threads in our scheme (fig. 9.1).

This effect was recognized in previous work [MS09], but existing solutions to avoid this
situation are mostly applicable to external TLS distribution schemes, e.g. by randomization
of the TLS base address for each thread context. This cannot be used here since we use
computed distributions.

Instead, cache and bank selection randomization techniques do apply and are effective
at mitigating this effect [RH90, Rau91, Sez93, GVTP97, KISL04, VD05].

To test this effect we have used four synthetic multithreaded benchmarks, two which do
not use TLS at all and two that use less than 512 bytes of TLS per thread. The two programs

9.4. IMPLEMENTATION 155

! &! "! (! #! '! $!

!

'!

&!!

&'!

"!!

"'!

(!!

('!

#!!

(a) Per-thread latency (clock cycles)

! &! "! (! #! '! $!

!7!!N

&!7!!N

"!7!!N

(!7!!N

#!7!!N

'!7!!N

$!7!!N

O!7!!N

%!7!!N

P!7!!N

&!!7!!N

H1-5I0/,J30<8*K04.8;3+0-:0/,8.12*43-./02L+3*M/D

(b) Instructions per cycle

Figure 9.2: Effect of TLS address conflicts with direct mapping.

! &! "! O! #! P! $!

!

"!

#!

$!

%!

&!!

&"!

&#!

&$!

&%!

F/+3G.-*H1.:6(I.2,691).+8.-*6,/0(21+,-.0J)1(K-B

(a) Per-thread latency (clock cycles)

! &! "! O! #! P! $!

!5!!L

"!5!!L

#!5!!L

$!5!!L

%!5!!L

&!!5!!L

&"!5!!L

(b) Instructions per cycle

Figure 9.3: Reduced TLS address conflicts with XOR-based randomization.

which do not use TLS perform simple data-parallel computations. The two programs using
TLS perform a more complex data-parallel operation which requires several procedure calls,
and thus multiple stack-related operations besides the computation. We then ran these
programs on a single multithreaded core with various numbers of thread contexts, given
in the figures’ x-axes. The processor is connected to a 128KiB 4-way associative L2-cache,
which fits the working set of all 4 benchmarks.

As can be seen in fig. 9.2, the pattern of memory accesses in the two latter benchmarks
incur a per-thread latency of several hundred cycles, contrasting with less than 50 cycles
per thread for the simple benchmarks. Despite the potential for latency tolerance offered
by fine-grained hardware multithreading, the number of instructions per cycle remains low
(<50%, fig. 9.2b). Monitoring of the L2 cache activity reveals that more than 40% of accesses
are misses caused by conflicts.

We then implemented an XOR reduction of the top and lower address bits to map L2
cache lines, inspired from [GVTP97]. As can be seen in fig. 9.3, this simple change caused
a 400% performance increase of the most memory-bound benchmark, mostly by allowing
independent memory accesses by different threads and thereby increasing IPC (fig. 9.3b).

156 CHAPTER 9. THREAD-LOCAL STORAGE

0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1 0 1 1 00 1 1 1 1 0 1

00 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 1 01 00 1 1 1 1 0 1

cache line bits

cache line bits

in-page address bitspage address bits

virtual address (used by program)

paging address (used by MMU/OS)

Figure 9.4: Address bit shuffling for non-TLS pages.

1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 00 1 0 1 1 0 1

10 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 1 10 00 1 0 1 1 0 1

P processor bits T thread context bits 31-P-T-V in-TLS address bits

cache line bits

cache line bits

in-page address bitspage address bits

virtual address (used by program)

paging address (used by MMU/OS)

Figure 9.5: Address bit shuffling to aggregate distinct small TLS spaces into shared physical
pages.

Note that the IPC measurement anomaly in fig. 9.3b is caused by an imprecision in our
accounting: some cycles attributed to one benchmark, which causes its IPC to exceed 100%,
should be accounted for another instead.

To summarize, although an extensive study of cache design was not within the scope▶
of our research, our work highlights that this TLS scheme places a strong need for tag
randomization in the cache system.

9.4.2.2 TLB pressure

With a naive implementation of virtual addressing, our scheme would require at least one
different translation entry for every thread context, because the address spaces of each TLS
area (megabytes for 32-bit addressing, petabytes for 64-bit addressing, cf. table 9.3) would
be larger than the virtual addressing page size (typically kilobytes on current systems). With
large numbers of processors and thread contexts (e.g. 256×1024 contexts on large chips), this
would require inefficiently large TLB implementations.

However, considering that the actual required TLS space in each thread is typically◻
smaller than the page size, e.g. a few hundred bytes if only a few activation records are
defined, we can propose an optimization to aggregate the actually used regions of TLS
within single translation entries. To do this, we organize virtual addressing as follows.

We consider that there are 2P cores (e.g. P = 6, 64 cores) and 2T thread contexts per
core (e.g. C = 7, 128 contexts). We also consider that there are 2C bytes in a cache line
(e.g. C = 6, 64 bytes). As a first step, we require that the virtual page size is at least 2C+P+T

bytes wide (e.g. 512KiB in our example). We consider that each page contains 2B bytes,

9.4. IMPLEMENTATION 157

Number of
processors

Contexts per
processor

Page size TLS storage per
thread in each page

8 8 4 KiB 64 B
8 8 16 KiB 256 B
8 8 1 MiB 16 KiB
64 64 256 KiB 64 B
64 64 1 MiB 256 B
64 64 16 MiB 4 KiB
1024 256 16 MiB 64 B
1024 256 128 MiB 512 B
1024 256 1 GiB 4 KiB
1024 1024 64 MiB 64 B
1024 1024 1 GiB 1 KiB
1024 1024 16 GiB 16 KiB

Table 9.4: Amount of TLS storage provided for each thread per virtual page.

Values assuming 64-byte cache lines.

with B ≥ C + P + T . Then we modify the Memory Management Unit (MMU) as follows.
When a request to translate a virtual address enters the MMU, the highest address bit is
tested. If the bit is set, indicating TLS, the virtual address is first translated as depicted in
fig. 9.5:

1. the lowest B − P − T bits are left unchanged;
2. the P + T most significant bits (except the highest) are shifted next to the lowest
B − P − T bits forming a complete in-page address;

3. the most significant bit (set) is shifted as the least significant bit of the page address;
4. the remaining original bits (from position B − P − T + 1 to B − 1) are shifted to the

remaining positions of the page address (from B + 2 onwards).

If the highest bit is not set, then the address is first translated as depicted in fig. 9.4:

1. the lowest B bits are left unchanged;
2. the most significant bit (unset) is shifted as the least significant bit of the page address;
3. the remaining original bits (from position B + 1 onwards) are shifted to the remaining

positions of the page address (from B + 2 onwards).

(The lowest C address bits are left unchanged to preserve locality within cache lines.)
Then the resulting page address is looked up in the TLB and/or translation table(s).

With this scheme in place, each virtual page with an odd address provides 2B−T−P bytes
of storage to every thread context in the system (e.g. 64 bytes with 512KiB pages, 2KiB
with 16MiB pages). This way, the number of TLB entries grows only as a function of the
largest TLS address effectively used in the system. Since it is uncommon to see a large
number of threads using simultaneously large TLS addresses, this relieves pressure on the
TLB.

We provide a few examples of the provision for TLS per virtual page in table 9.4. As can
be seen in this table, usual page sizes on contemporary operating systems (4KiB to 16MiB)
are sufficient to provision at least a cache line per thread context up to moderately sized
system (64 cores), and only a four-fold increase to at least 64 MiB per page is sufficient to
support future-generation chips with thousands of cores.

158 CHAPTER 9. THREAD-LOCAL STORAGE

1 1 0 1 0 1 1 0 1 0 0 1 10 1 1 0 1 0 0 0 0 0 0 00 1 0 1 1 0 1

11 1 0 1 00 0 0 0 0 1 0 1 0 1 1 0 1 0 0 1 10 0 0 1 0 1 1 0 1

P processor bits T thread context bits 31-P-T-V in-TLS address bits

cache line bits

cache line bits

in-page address bitspage address bits

virtual address (used by program)

paging address (used by MMU/OS)

V resource bits

Figure 9.6: Address bit shuffling for non-TLS pages (virtual processes).

9.4.2.3 Reclamation of TLS storage

To analyze the issues related to reclamation, we must separately consider the situation
without the TLB aggregation scheme presented above, and the situation once it is enabled.

Without the optimization, the issues of reclamation for this scheme are similar to those
from the persistent dynamic allocation scheme described in section 9.3.1. The main differ-
ence is that the TLS address ranges are defined as translation entries in the virtual addressing
subsystem, instead of per-context base addresses on each processor.

This makes aggressive reclamation difficult to implement: since the program and the vir-
tual addressing subsystem are typically isolated from each other, the program must signal
to an operating system every bulk creation and termination event to enable reclamation.
Since the overhead of interactions with system services is typically higher than local proce-
dure calls, it would defeat the entire approach and make persistent dynamic allocation more
attractive. Context-based partitioning with deferred allocation and aggressive reclamation
would only be viable if virtual addressing is under direct control of the program.

Delayed reclamation, in contrast, is tractable: a concurrent GC can asynchronously
inspect the areas of memory pointed to by the active translation entries, and unmap all the
unused areas. Or, alternatively, an operating system can release all translation entries at
once when the program terminates.

With the aggregation optimization presented in the previous section, there is a significant
problem however: reclamation becomes impossible because each page contains a part of the
TLS area of all thread contexts in the system due to the bit shuffling.

To overcome this obstacle, we introduce virtual resource identifiers as part of the ad-◻
dressing scheme in addition to the physical processor identifiers, as depicted in fig. 9.6.
These are numerical identifiers that delimit a memory management domain, for example a
process in an operating system. In the addressing scheme, each access to TLS by a thread
places the virtual resource identifier above the processor bits in virtual addresses, and the
MMU shifts them to form the Least Significant Bit (LSB) of page addresses prior to address
translation.

We suggest that this extension only applies to implementations with 64-bit addressing,
since the size of the virtual resource identifier constrains the address width usable to address
memory. Also, the width of the virtual address identifier in bits directly impacts TLB
pressure, since TLS addresses from threads with different resource identifiers will map to
different pages. This is similar to how synonyms increase cache pressure in virtually tagged
caches [CD97a, CD97b].

9.5. INTEGRATION WITH THE MACHINE INTERFACE 159

However, virtual resource identifiers solve the reclamation problem. Indeed, since the
resource identifier is part of the page identifier, two application components using distinct
resource identifiers will map to different pages, and reclamation becomes possible by reclaim-
ing entire sets of pages sharing the same resource identifier. This assumes that applications
are constrained to avoid sharing of memory between program components that have distinct
resource identifiers, or that explicit registration of common memory objects to a reclamation
system service is mandatory.

Final reclamation at program termination is the reclamation strategy we adopted in our▷
implementation. We expect concurrent GC of translation entries to be better suited against
over-allocation in long-running programs, however we could not explore this direction due
to our limited effort budget.

9.5 Integration with the machine interface

Depending on the selected TLS scheme for a given implementation, the required architecture
support differs:

• for dynamic pre-allocation and self-allocation, some form of mutual exclusion is re-
quired;

• for persistent dynamic allocation, both mutual exclusion and access to a per-context
TLS base pointer and size is required;

• for all context-based partitioning schemes using external distribution, mutual exclusion
may not be required, but access to the per-context TLS pointer and TLS size is
required;

• for all context-based partitioning schemes using computed distribution, mutual exclu-
sion may not be required but access to a common TLS base pointer and TLS address
space size are required to compute the actual local, per-context TLS base pointer.

To summarize, either mutual exclusion or a way to obtain or configure the per-context
TLS base pointer and size is required, or both. Since mutual exclusion can be introduced
by traditional means (either memory-based atomics or as an operating system service), we
focus here on the latter.

The requirement is for each logical thread to be able to retrieve the TLS base pointer for
its own thread context, as well as the corresponding TLS size. Alternatively, the thread can
be allowed to retrieve the first and last address of its TLS area, from which it can compute
the size if needed.

In our work, we opted for the following extension to the machine interface:

• two new operations “ldbp” and “ldfp” are introduced, with the corresponding assembly
mnemonics “ldbp” and “ldfp.” The first loads the base TLS address into its target
operand, and the second loads the first address past the end of the TLS area. This
allows us to both derive the size of the TLS and let a system implementation choose
for upwards or downwards stack growth;

• in addition, two new operations “gettid” and “getcid” are introduced, with the corre-
sponding mnemonics “gettid” and “getcid.” The first loads the local thread context
identifier of the issuing thread into its target operand, and the second loads the local
processor (core) identifier. Both use 0-based indexing. This allows us to implement
context-based TLS schemes using explicit distribution with arbitrary data structures
in memory.

160 CHAPTER 9. THREAD-LOCAL STORAGE

1 mov (__first_tls_top −__tls_base) , %t l 1 ! t l 1 := sz
2 gettid %t l s p ! sp := t i d
3 s l l %tl sp , %t l1 , %t l s p ! sp := t i d ∗ sz
4 sethi %hi (__first_tls_top) , %t l 1 ! t l 1 := f i r s t top
5 add %tl sp , %t l1 , $ t l s p ! sp := f i r s t top + t i d ∗ sz

Listing 9.1: Code sequence to access TLS on UTLEON3.

9.5.1 Example with the 1-core FPGA prototype

On the UTLEON3-based FPGA prototype implementation, we used the static/computed
scheme, with 1 KiB bytes of RAM allocated to each of the 128 thread contexts.

To implement this, a 128 KiB array is defined in the program data. A linker symbol
named “__first_tls_top” is placed at the address 1 KiB past the start of the array in
memory. The compiler then emits the sequence in listing 9.1 at the start of every thread
program which uses TLS. At run-time, each of these instructions executes in one processor
cycle and access to TLS is gained in 5 cycles. It is possible to reduce this to 4 cycles if we
fix the size to a static value, in which case the first operation is not needed and the size can
be given as immediate constant to “sll.”

9.5.2 Example with the multi-core system emulation

On the MGSim system emulation, we used the deferred/computed scheme. Here the imple-
mentation is simpler: the compiler simply needs to emit a single use of “ldfp $sp” at the
start of every thread program which uses TLS. At run-time, the bits required to construct
the TLS final address are available in the pipeline and allow the operation to complete in 1
processor cycle. The size of the individual TLS areas can be further obtained by subtracting
the output of “ldbp” from the output of “ldfp.”

9.5. INTEGRATION WITH THE MACHINE INTERFACE 161

Protocol Mechanism Time cost†

Dynamic pre-allocation procedure call or active
message by creating thread

A1

Self-allocation procedure call or active
message by each created
logical thread

A′

1 ×N

Persistent dynamic allocation procedure call or active
message by the first logical
thread of a context

A′′

1 × P

Context-based pre-reservation static pre-allocation,
external distribution

A1 +A2 +C1(P)

Context-based pre-reservation deferred pre-allocation,
external distribution

A2 +C1(P) +C2(P)

Context-based pre-reservation static pre-allocation,
computed distribution

A1 +C3(N)

Context-based pre-reservation deferred pre-allocation,
computed distribution

C4(P,N)

† N : number of logical threads created. P : number of thread contexts participating in
the bulk creation. A1: cost to perform one allocation of TLS space. A2: cost to allocate
an array of pointers. C1(P): cost to compute and store one pointer for each context.
C2(P): cost to provision virtual memory upon first access by each context (may be
aggregated across multiple contexts and occur concurrently). C3(N): cost to compute
one pointer in each logical thread (may occur concurrently). C4(P,N): combined cost
of provisioning virtual memory and computing pointers (may occur concurrently).

Table 9.5: Protocols to provision TLS for one bulk creation.

Summary

Provisioning Thread-Local Storage (TLS) to threads is an essential feature of a general-
purpose system, mostly because per-thread stacks are necessary to support recursion and
arbitrary large numbers of local variables.
One specific challenge related to massively concurrent architectures is support for a large
number of threads and the design objective to keep thread creation cheap throughout the
abstraction stack. This opposes traditional operating software approaches which exploit a
common memory allocation service using mutual exclusion, as this would become a con-
tention point as the rate of thread creation increases overall.
Another challenge related to the specific design from part I is that TLS is a feature of logical
threads, whereas our physical unit of concurrency is the physical thread context. As the
number of logical threads can be arbitrary large but they are serialized over the hardware
contexts, TLS should be allocated per context and not per logical thread.
In this chapter we have reviewed traditional approaches to provision TLS to threads. We◻
summarize the various options in table 9.5. We presented multiple schemes that pre-allocate
address space and associate semi-statically TLS areas to thread contexts. They address both
challenges identified above at once. They involve joint support from the architecture and▶▷
from operating software providers, in particular with regards to reclamation of unused TLS
ranges.

Chapter 10

Concurrency virtualization
—Highlight on specifics, opus 3

Abstract

A key role of abstraction is to hide the finiteness of physical-world resources, in
particular through their virtualization. Virtualization in turn requires specific support
from the underlying architecture, and thus constitutes an ongoing interaction between
the platform provider and operating software provider. In this chapter, we illustrate
this interaction for the virtualization of the “family,” a group of cooperatively scheduled
logical threads that can be created and joined using single bulk operations.

Contents
10.1 Introduction . 164
10.2 Context and related work . 165
10.3 Controllable automatic serialization . 166
10.4 Limitations and future work . 171
Summary . 173

163

164 CHAPTER 10. CONCURRENCY VIRTUALIZATION

10.1 Introduction

As noted in [Day11], a duality exists between specialization and generalization when con-
structing abstractions. “Specialization” refers to language restrictions, compile-time (static)
solutions and the exploitation of machine-specific facilities—in the interest of efficiency.
“Generalization” refers to general language constructs, run-time (dynamic) solutions and
machine-independent language design—in the interest of correctness and reliability. When
catering to operating software providers, the hardware architect must recognize this duality
and enter a dialogue at both levels.

In particular, general abstractions often hide implementation-specific resource limits, to
ensure portability and forward compatibility of software. This hiding is achieved by introduc-
ing “virtual” resources, which appear unbounded in the abstract semantics of programming
languages. Resource virtualization thus achieves a separation of concerns between software
specification and its realization at run-time where resource constraints apply. To implement
resource virtualization, platform providers and operating software providers must co-design
virtualization mechanisms. For example, the virtualization of variable slots in programming
languages is typically supported by introducing relative addressing in processors and offset
tables in compilers. Meanwhile, the need for specialization requires that users of abstrac-
tions can control resources explicitly when so desired [Kic91]. Any virtualization mechanism
should thus provide and document optional control to disable or bypass virtualization.

In the context of general-purpose systems, the need for resource virtualization has tra-
ditionally been offset by ensuring that most resource abstractions available in programing
languages could be expressed in terms of data structures in memory: once multiple resources
can be represented by memory, only one virtualization mechanism for memory is needed to
virtualize these resources. This is the approach taken e.g. in Unix-like operating systems
where inter-process communication channels, files and synchronization devices are all rep-
resented by data structures in memory and thus appear unbounded with the backing of
virtualized memory. Processes, which are, resource-wise, a combination of virtualized pro-
cessors and memory, require a separate mechanism to virtualize processors; Unix uses time
sharing for this purpose.

When innovating in processor chip design, it is thus necessary to interact with the op-
erating software providers to define virtualization mechanisms for all the resource types
introduced. As the Unix experience illustrates, a potential strategy is to represent new
resource types in terms of data structures in virtual memory.

10.1.1 Example new resources to virtualize: concurrency contexts

As we explained in part I, the proposed architecture design introduces “execution contexts”
for concurrent tasks, dedicated to optimize the management of concurrency throughout the
system stack. The architecture design introduces three types of resources: one is the logical
thread of execution, another is the bulk creation context to prepare the automatic creation
of multiple logical threads, and the last is the bulk synchronizer to synchronize on the
termination of multiple logical threads at once.

As explained in section 3.3.1, the proposed machine interface already provides dedicated
support to virtualize logical threads: it states that an arbitrarily large number of logical
threads are automatically scheduled over the physical thread contexts. Thread virtualization
is thus achieved in hardware.

10.2. CONTEXT AND RELATED WORK 165

Meanwhile, our proposed abstract machine (chapter 7) defines primitives to create and
synchronize on concurrent tasks hierarchically as abstract families, at run-time. Its seman-
tics make an assumption of unlimited hardware resources, by implying that creating logical
threads and waiting on their termination always succeeds. In other words, our abstract
machine communicates the illusion that programs can always create new families, regardless
of where in the program, and when during run-time, creation is expressed. This enables
resource-agnostic programming where concurrent program blocks can be freely composed
without having to choose which computation is defined as a concurrent family and which
computation should be defined as a sequential process.

However, the bulk creation contexts and bulk synchronizers have an explicit, named
existence in the machine interface, as explained in chapters 3 and 4. Without support for
virtualization of the bulk creation context and bulk synchronizers, it is possible to express
programs that may define more families during their execution than there are bulk creation
contexts available in hardware. For example, divide-and-conquer algorithms exhibit this
situation when the depth of the recursion is data-dependent. With a transparent mapping
of the input language construct for family creation to machine primitives, progress and
termination of otherwise semantically valid deterministic programs would not be guaranteed,
since an extra context allocation when all hardware resources are busy would yield a deadlock
or failure (section 4.3.1.1).

To resolve this mismatch, we propose in this chapter a controllable mechanism to virtual-
ize the bulk creation contexts and bulk synchronizers. In section 10.2, we start by outlining
how concurrency resources are managed and virtualized in related work. We then outline
our proposed protocol in section 10.3 and analyze its limitations in section 10.4.

10.2 Context and related work

The example situation we are addressing here is averted in most existing concurrency man-
agement environments, in either of two ways:

• in resource-aware concurrent programming environments, the resource limitations of
the underlying execution platform are exposed in the programming language semantics:
the programmer or automatic program generator must either acknowledge and assume
a fixed set of processing units known a priori, or explicitly query at run-time how many
processing units are available before starting parallel execution.
This situation can be found, for example, with programs that distribute work over
parallel “worker” processes implemented with POSIX processes or threads; the appli-
cation must query the number of actual processors in the system, and possibly also
how many POSIX processes/threads are supported by the operating system, to de-
termine how many workers to start. The Apache web server application1 uses this
scheme. It can also be found with the MPI environment, where a process needs to
query the number of processes involved in a communicator with MPI_Comm_size before
spawning sub-processes with MPI_Comm_spawn.

• in virtualized resource-agnostic concurrent programming environments, most imple-
mentations support unbounded numbers of virtual concurrency contexts backed up
by main system memory: any request to spawn a new parallel thread of execution is
matched by the dynamic allocation, in main memory, of the required data structures.

1http://httpd.apache.org/

http://httpd.apache.org/

166 CHAPTER 10. CONCURRENCY VIRTUALIZATION

In this situation, the maximum amount of concurrency that can be defined is typically
orders of magnitude larger than the number of hardware processing units, ensuring
that the limit is never reached in all practical circumstances.
This situation can be found in most existing task-based concurrency interfaces: tasks
in .NET’s Thread Parallelism Library (TPL) [Duf09] and Intel’s Threading Building
Blocks (TBB) [Rei07], blocks with GCD [App, Sir09], tasks with OpenMP [Ope08],
etc.

In both situations, there is no interface mismatch: in the former case, the input con-
currency matches the number of execution contexts by design, and in the latter case the
number of execution contexts scales automatically with the amount of concurrency defined
by the input program.

Arguably, resource-agnostic programming should be the privileged approach for pro-
gramming current and future multi-core systems [PJ10]. However, virtualization of execu-
tion contexts, where there can be more execution contexts defined than there are processors
available, often incurs implementation complexity and run-time overheads: unless some re-
striction is made on scheduling, space must be allocated from memory to save the state of
tasks at every context switch. This incurs contention on memory allocators and extra traffic
on the memory network.

An example restriction that alleviates the need for saving the state of all tasks to memory
is so-called declarative, resource-agnostic concurrent programming environments. In these,
programs declare concurrent operations to perform without indicating whether, where or
how to perform them, and the language compiler and underlying platform then cooperate
to determine the cheapest and most efficient execution strategy. The specific advantage
of declarative concurrency constructs in the associated languages is that any excess con-
currency can be serialized cooperatively, as a loop or recursion, automatically within single
execution contexts without changes in semantics. As such it constitutes a form of cooperative
virtualization.

This is the approach exploited by e.g. the automatic folding of concurrent spawns in the
parent task in Cilk [BJK+95], the aggregation of multiple iterations of loops as single tasks
in OpenMP [Ope08], the various aggregation strategies of the SAC2C compiler of Single-
Assignment C [GS06], the automatic aggregation of parallel algorithms via “partitioners” by
Intel’s TBB run-time system [Int11], the automatic serialization of data parallel algorithms
by the Chapel compiler and run-time system [Cra11].

10.3 Controllable automatic serialization

In this chapter, we propose a possible implementation of declarative concurrency for the pro-◻
posed target architecture. While doing so, we remove partly from the language semantics
the transparency between the concurrency expressed in the program and actual parallelism
of execution on the platform at run-time. Our strategy is to delay the choice between con-
current execution, via hardware families, and sequential execution within the context of an
existing active thread, via serialization, until run-time when the actual availability of exe-
cution units is known. Meanwhile, we reserve the opportunity to control the virtualization
via optional language constructs. We thus propose two interfaces to control concurrency:

• when the implicit form of concurrency constructs is used in programs, the automatic
scheme is used and run-time resource availability is used to choose between concurrent
and serial execution;

10.3. CONTROLLABLE AUTOMATIC SERIALIZATION 167

• additionally, a programmer, code generator or run-time system implementer can add
explicit specifiers to the constructs to either force concurrency creation or force se-
quentialization in a specific syntactic locus.

In both cases, the semantics presented in chapter 7 apply to describe the functional
semantics of programs. With the implicit form, progress and completion of workloads are
guaranteed by reusing existing contexts for any excess concurrency. With the explicit form,
progress and completion are only guaranteed if the entity that wrote the program (program-
mer or code generator) collaborates with a resource management service on the system to
not require more contexts than are available in the actual platform.

10.3.1 Implementation

Prior to the introduction of “soft failure reporting” in the allocation of bulk creation contexts
(cf. section 4.3.1.1), we attempted to expose resource counters in the hardware that would
reflect the occupancy of the hardware structures. We could make these counters visible either
via special memory addresses or dedicated instructions in the ISA. However, we found that
any counter-based scheme which does not also adapt the family allocation mechanism is
flawed, because the fine-grained concurrency in the system makes the value of such counters
essentially inaccurate: there can be family allocations, or de-allocation events, between a
point a counter is sampled and the point the value is acted upon. Generally, any feedback
mechanism must ensure that the test on availability and the allocation of a processing
resource if there is one available are performed atomically.

Instead we co-designed “soft failure reporting” with the architecture implementers. With∎
this feature the “allocate” primitive returns a special “invalid” value upon failure to allocate a
bulk creation context. We further introduced a parameter to the operation, to select whether
failure allocations are reported to the software (“soft failure”), or whether allocation should
wait indefinitely until a context becomes available (“suspending”). The latter option allows
to implement mandatory concurrency, or mandatory delegation of an activity such as needed
for system services (section 5.5.1), without using busy waiting loops on allocation failures.

Once the feedback mechanism becomes available in the target implementation, we can use
it during code generation as follows: whenever execution reaches a point where a concurrent
family of threads is declared in the input program, the executed code first attempts the
context allocation2. Then, if the result indicates a failure, the code branches to the serialized
version of the declared work. Otherwise the declared work is created as a concurrent family
of logical threads.

To illustrate this scheme, we consider the example code from listing H.21, which defines
a thread program “innerprod” and uses it in a “kernel” function. With our strategy enabled,
the translation stage before code generation produces the code given in listing 10.1, which
in turn causes code generation and post-processing to produce the assembly code given in
listing 10.2 for the SPARC-based target ISA.

This example allows us to highlight the following:

• the scheme requires duplication of the code of thread programs: one version must be
generated suitable for creation as a thread (listing 10.1, line 5), and another suitable
for a procedure call in C (line 6); furthermore, both must be declared before they are
defined, in case the input program uses recursion;

2This causes the hardware allocator to attempt an allocation of the desired number of contexts, or any
smaller size down to a single context, or fail if no context is available whatsoever.

168 CHAPTER 10. CONCURRENCY VIRTUALIZATION

1 void _mts_innerprod (void) ;
2 void _seq_innerprod (long _I , int ∗ , int ∗ , int ∗) ;
3 extern void ∗ innerprod [2] ;
4

5 void _mts_innerprod (void) { /∗ thread program ∗/ }
6 void _seq_innerprod (long _I , int∗ _mtp_a, int∗ _mtp_b,
7 int ∗ _mtp_sum) { /∗ p l a i n C func t i on ∗/ }
8 void ∗ innerprod [2] =
9 { &_mts_innerprod , &_seq_innerprod } ;
10

11 int A[1 0 0] ;
12 int B[1 0 0] ;
13

14 sl_def (kerne l , , sl_shparm(int , r e s)) {
15 long _fid , _start , _limit , _step , _block , _idx ;
16 int ∗ _arg1 , ∗ _arg2 , _arg_sum_11 ;
17

18 /∗ common i n i t i a l i z e r s from program source : ∗/
19 _start = 0 , _l imit = 100 , _step = 1 , _block = 0 ;
20 _arg1 = A, _arg2 = B, _arg_sum = 0 ;
21

22 /∗ a l l o c a t i o n t e s t : ∗/
23 asm volat i le (" a l l o c a t e ␣%0" : "=r " (_fid)) ;
24 i f (−1 == _fid)
25 goto _seq ;
26

27 /∗ here con f i gu r e and c rea t e as fami l y o f threads ,
28 us ing con t ex t _fid ,
29 range (_start , _limit , _step) ,
30 window s i z e _block ,
31 source va l u e s _arg1 , _arg2 , _arg_sum ,
32 thread program _mts_innerprod ,
33 then synchron i ze and update _arg_sum ∗/
34 goto _end ;
35

36 _seq :
37 i f (_step > 0)
38 for (_idx = _start ; _idx < _limit ; _idx += _step)
39 _seq_innerprod (_idx , _arg1 , _arg2 , &_arg_sum) ;
40 else
41 for (_idx = _start ; _idx > _limit ; _idx += _step)
42 _seq_innerprod (_idx , _arg1 , _arg2 , &_arg_sum) ;
43

44 _end :
45

46 sl_setp (res , 0) ;
47 }

Listing 10.1: Automatic serialization code for listing H.21 (simplified).

10.3. CONTROLLABLE AUTOMATIC SERIALIZATION 169

1 ! (‘ ‘ innerprod ’ ’ code omitted)
2 . global _mts_kernel
3 . type _mts_kernel , #func t i on
4 . registers 0 1 6 0 0 0
5 _mts_kernel :
6 allocate %t l 3 ! . ‘ ‘ t ry or f a i l ’ ’
7 cmp %tl3 , −1; swch ! . s u c c e s s ?
8 be . LL13 ! . no : branch below
9 nop
10 sethi %hi (A) , %t l 0 !+ load channel source
11 or %tl0 , %lo (A) , %t l 0 !+ load channel source
12 sethi %hi (B) , %t l 1 !+ load channel source
13 or %tl1 , %lo (B) , %t l 1 !+ load channel source
14 mov 0 , %t l 2 !+ load channel source
15 setl imit %tl3 , 99 !+ con f i gu r e l im i t
16 sethi %hi (_mts_innerprod) , %t l 5 !+ load PC
17 or %tl5 , %lo (_mts_innerprod) , %t l 5
18 setthread %tl3 , %t l 5 !+ con f i gu r e PC
19 create %tl3 , %t l 3 ; swch !+ c r ea t e fami ly
20 mov %tl3 , %t l 3 ; swch !+ wait on terminat ion
21 . LL14 :
22 mov %tl2 , %ts0 ! . propagate r e s u l t
23 end ! . end thread
24 . LL13 :
25 sethi %hi (B) , %t l 4 !− load argument
26 sethi %hi (A) , %t l 5 !− load argument
27 mov 0 , %t l 0 !− i n i t counter
28 mov 0 , %t l 2 !− load argument
29 or %tl4 , %lo (B) , %t l 4 !− load argument
30 or %tl5 , %lo (A) , %t l 5 !− load argument
31 . LL15 :
32 ld [% t l 4+%t l 0] , %t l 3 ! i n l i n e d load
33 ld [% t l 5+%t l 0] , %t l 1 ! i n l i n e d load
34 add %tl0 , 4 , %t l 0 !− increment counter
35 smul %tl3 , %t l1 , %t l 1 ; swch ! i n l i n e d mul
36 cmp %tl0 , 400 !− t e s t counter
37 add %tl2 , %t l1 , %t l 2 ; swch ! i n l i n e d reduct ion
38 bne . LL15 !− next i t e r a t i o n
39 nop
40 b , a . LL14 !− back to common end
41 nop
42 . s ize _mts_kernel , .−_mts_kernel

Listing 10.2: Generated assembly code for listing 10.1.

170 CHAPTER 10. CONCURRENCY VIRTUALIZATION

• once the definition of the C function is in scope, the inlining capabilities of the code
generator can operate as usual; this is demonstrated in the example where the code
generator inlines the kernel loop entirely (listing 10.2, line 31);

• although there are two loops to cater for both increasing and decreasing index se-
quences, usually constant propagation of the step value by the code generator will
ensure that only one branch is compiled, as demonstrated in the example;

• the overhead of the scheme compared to a pure sequential code using a loop is 3
machine instructions: one use of family allocation (listing 10.2, line 6) and a conditional
branch (lines 7 and 8);

• the overhead of the scheme compared to a transparent use of the concurrency primitives
of the underlying architecture is 2 machine instructions, i.e. the conditional branch;

• although the two versions can be separately identified by name mangling3, we also
need to generate a single function descriptor (listing 10.1, line 8), defined as an array
of pointers to the two codes and with the original name “innerprod,” to allow a single
address for the function to be taken and stored in C data structures, as required for
system code;

• although an allocation failure causes a serialized version of the family-defining loop to
be used, this does not imply that the family is fully serialized: if the thread program
of the serialized family uses further family creations, these will attempt to allocate a
concurrent context again. This allows parallelism to be re-gained dynamically once
some contexts become available.

10.3.2 Impact on the language semantics

Thanks to the requirement of serializability introduced early on (section 6.2.4), the base
language semantics as of chapter 7 and Appendix I did not require any change with the
introduction of this automated resource scheduling scheme in the implicit form of the con-
currency constructs. In particular, all our definitions about scheduling, ordering of side
effects, etc. discussed in chapter 7 apply to the new operational semantics of our implemen-
tation just as well as they did without the scheme implemented.

However, as described in section 10.3, we also found necessary to cater for the need of◻
system code by providing an explicit control over this scheme. We did this by extending the
syntax form of create specifiers (Appendix I.5.8.1):

create-specifier :
. . .
sl__forceseq
sl__forcewait

With this syntax extension, it becomes possible to use the words “sl__forceseq” or
“sl__forcewait” as the 6th positional parameter of the “sl_create” construct. The code
translator can then determine which allocation mode to use, respectively “wait and succeed”
or “try or fail,” and also avoid emitting the version of the creation code that is left unused
(respectively the serialized and non-serialized part). See also side note 10.1.

From a semantics perspective, these specifiers do not modify the functional behavior
of the program; however we intentionally choose to not advertise their existence in our

3e.g. “_mts_innerprod” vs. “_seq_innerprod”

10.4. LIMITATIONS AND FUTURE WORK 171

Side note 10.1: Static vs. dynamic allocation failure management.
The syntax-based discrimination is static: the specifiers are lexical keywords and it is their presence or
absence in the syntax that determines the choice at compile-time.
We chose a static scheme over a dynamic scheme, i.e. where the run-time value of an expression would deter-
mine the behavior, because we found that in all situations where control is desired, we know statically which
implementation should be used. If future work shows that a dynamic choice is required instead, we estimate
that the additional implementation work required to add a run-time conditional in the generated code is
minimal; however we highlight that a run-time conditional would prevent the static elision of whichever
version is not used from the generated code.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(a) Sequential

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(b) 1 family context

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(c) 32 family contexts

Figure 10.1: Execution of QuickSort on 1 core.

These diagram represent memory activity over time. The horizontal axis represents time; the
vertical axis represents cells in the array being sorted. A dot in the diagram represents a memory
read or write operation. In a sequential execution, only one branch of the recursive divide-and-
conquer step is executed at a time (e.g. figs. 10.1a and 10.1b); with concurrency, multiple branches
are executed simultaneously (e.g. fig. 10.1c).

published interface language specification, since they require the conceptual introduction of
a resource model which does not otherwise exist in C.

10.3.3 Run-time behavior

In Appendix J we detail the behavior of two naive recursive QuickSort implementations with
our strategy enabled.

As expected, the use of our concurrency constructs adds overhead compared to a pure
sequential version if the program is forced to run as a single thread, because the hardware
must stall the execution at every attempt to allocate a bulk creation context until the
allocation unit reports a failure. However, as soon as more than one context is available
in hardware, it is automatically exploited by the program and the resulting multithreaded
execution provides latency tolerance and speedup, even on one core (fig. 10.1).

Interestingly, we found that it is not very beneficial to instrument the naive version to
only use concurrency when the amount of work at a given recursion level, here the size of
the sub-array to sort, is larger than a threshold (fig. 10.2). Indeed, since the cost of testing
the sub-problem size is comparable to the cost of trying an allocation, any threshold-based
alteration to the scheme amounts to trading one time overhead with the same.

10.4 Limitations and future work

As seen above, our scheme incurs a check overhead, with longer execution times than a
pure sequential program, if concurrent code executes in a mostly sequential environment.

172 CHAPTER 10. CONCURRENCY VIRTUALIZATION

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(a) 1 family context

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(b) 32 family contexts

Figure 10.2: Execution of QuickSort on 1 core (threshold: 16 elements).

Furthermore, this overhead cannot be trivially avoided by means of a threshold on the
problem size, because simple conditionals have a comparable cost to a failed allocation.

We generalize by stating that a program containing dynamically heterogeneous con-
currency should only be expressed using concurrency constructs in the source code if a
reasonable confidence exists that multiple family contexts will be available at run-time to
provide multithreading overlap and compensate for the overheads. This confidence can be
provided by an on-chip resource manager that partitions the chip between application com-
ponents (cf. chapter 11). Otherwise, the concurrency management overheads contribute to
the critical path through the execution, as highlighted in [FLR98].

We suggest that the scheme could be extended by duplicating the entire recursion as▷
a purely sequential program, with a unique start-up check in the algorithm entry point
on whether the underlying execution resource is sequential or not. In the sequential case,
the sequential code is used and this overhead could be avoided. This possible extension
constitutes future work.

There is another limitation that can be observed when running families defining many▷
logical threads, for example one thread per item in an array. If an algorithm exhibits both
dynamically heterogeneous concurrency, e.g. data-dependent divide-and-conquer, and large
families, it becomes possible that the serialization of a family causes a load imbalance: once
a leaf family starts to run as a loop, it will execute entirely as a loop, even if concurrency
contexts become available during the loop execution. We suggest to extend our scheme to
try and allocate contexts within the loop body, and switch back to parallel execution when a
context becomes available. To avoid a detrimental effect on the performance of inner loops,
these attempts should be performed by an outer loop with a configurable coarser step than
the inner loop. This should be explored in future work.

Furthermore, while working on TLS (chapter 9), we discovered another limitation to▷
this scheme: the serialization of a family of threads as a loop also merges any thread-
local storage requirements, e.g. minimum stack frame sizes, of the serialized family into the
thread where the serialization occurs. In other words, in any situation where serialization
may occur, the execution environment must provision extended thread-local storage to each
serializing thread context. With recursion, the thread-local storage of some threads may
become arbitrarily large during execution. This in turn requires an efficient, low-latency
dynamic memory allocation scheme with extremely low contention to keep all threads on
each core active [Gru94]. Concurrent dynamic memory management is a known active
field of research, and we expect any future result in that direction to be relevant to the
architecture considered.

10.4. LIMITATIONS AND FUTURE WORK 173

Finally, we highlight that the virtualization scheme described in this chapter is coop-▷
erative. In particular, it requires that the programming language semantics do not expose
mandatory parallelism, i.e. the ability for a program description to require from the plat-
form that two activities must be carried out in parallel (e.g. so that they can communicate
bidirectionally). This requirement holds for languages like our proposed interface from chap-
ters 6 and 7, where the main constructs for concurrency are declarative. However, as we
suggested in section 6.3.6 and detail further in chapter 12, other programming interfaces
may be devised for the platform. For example an implementation of Unix would require
another form of concurrency virtualization that guarantees fair scheduling between inde-
pendent processes. If or when this happens, and an alternate interface offers mandatory
parallelism in its semantics, other virtualization mechanisms will be required.

Summary

In this chapter, we have highlighted the dialogue between the hardware architect and the◻
operating software provider to design virtualization mechanisms that abstract away the
finiteness of physical resources. This dialogue must be engaged each time a new resource
type is added to a platform design.
We have illustrated this dialogue with the example of concurrency resources in the proposed
architecture, which are finite on any given implementation and are desirably unbounded
in abstract models. We have addressed this virtualization need by introducing declarative∎◻
concurrency constructs in the interface language. We have also proposed an implementation
of these constructs that automatically and cooperatively sequentializes units of work at run-
time when concurrency resources in the underlying platform become exhausted. We have▷
isolated a need to manage the mapping of workloads to resources in future work. We have
also highlighted that declarative concurrency may not be suitable for other programming
abstractions, where different virtualization mechanisms may be required instead.

Chapter 11

Placement and platform partitioning
—Highlight on specifics, opus 4

The way forward seems to be to
provide reasonable operations,
and make costs somewhat
transparent.

Andrei Matei

Abstract

When adding new architectural features that do not have corresponding abstrac-
tions in the operating software stack, it is sometimes necessary to create “holes” in the
lower level interfaces so that the new features can be exploited directly. However the
constructs to drive these new features should still be designed to abstract away uninter-
esting characteristics of the implementation, and expose instead its general principles.
We illustrate this with the example of work placement. As explained by [PHA10] and
previous work, placement optimization cannot be fully automated in hardware and the
efficient execution of fine-grained concurrent workloads over large many-core chips will
require dedicated interfaces to control the mapping of computations to specific cores in
operating software. However, no consensus yet exists as to what these interfaces should
be. Upcoming many-core system stacks will thus need to explore placement issues by
exploiting primitives that are not yet part of the usual abstraction tool box. In this
chapter, we discuss how such primitives from the architecture proposed in part I can
be exposed to the operating software providers.

Contents
11.1 Introduction . 176
11.2 On-chip work placement: exposing control . 177
11.3 On-chip work placement: how to exploit . 182
Summary . 186

175

176 CHAPTER 11. PLACEMENT AND PLATFORM PARTITIONING

11.1 Introduction

In chapter 5, we outlined the special relationship between platform providers and the
providers of “first level” operating software, such as the C programming environment. We
also highlighted the integration process for innovations at the level of the machine interface:
first level operating software is first extended beyond the scope of established standards,
then applications start to use non-standard features, and then features confirmed to be
useful across a range of applications are retrospectively integrated in new revisions of the
standards. To enable this process, there must exist “holes” in the abstraction layers to
provide direct access to new features. An example of this is the asm construct in most
C implementations, which allows C programs to use machine instructions not yet used by
existing C language features.

Placement of computations and data on physical resources on a chip is another example
of a platform feature still missing standard abstractions.

In contemporary systems, explicit placement is usually available through a system API
with a large granularity: a program wishing to bind a computation, usually a thread or a pro-
cess, to a particular processor will request so through an interface to the operating system’s
scheduler. Examples are Linux’ sched_setaffinity or FreeBSD’s cpuset_setaffinity.
This usually requires special privileges and the overhead of a system call, and in practice
is usually only performed once at program start-up to assign “worker” threads to specific
processors, which then cooperatively negotiate the dispatch of tasks through data structures
in shared memory. Even when considering the task dispatching process itself as a placement
mechanism, overheads are also incurred by the cache coherency required to communicate
the task data structures across cores in the memory network.

In contrast, the concurrency management primitives available with the architecture from
part I allow programs to optionally and explicitly control the mapping of computations onto
cores via a dedicated “delegation” NoC. The delegation messages are issued via special ISA
instructions. This protocol enables the dispatch and synchronization of multi-core workloads
within a few pipeline cycles; the direct use of the corresponding ISA instructions by programs
is therefore orders of magnitude faster than the overhead of calling a system API, and also
faster than sharing task data structures via a memory network.

However, direct use in programs also implies that the first level interface languages in the
operating software must expose the hardware primitives as first-class language constructs
that can be used at any point in algorithms. In the case of C, for example, this is a
radically new requirement as C had never exposed knowledge about the physical location of
sub-computations previously.

What should this language interface look like? One the one hand, we can predict that
a first level interface can hide hardware-specific details such as the encoding of the special
instructions. On the other hand, there is obviously not enough information at the lower
level of the abstraction stack to devise high-level abstractions, for example “automatically
perform the best work distribution for a given parallel computation.” This knowledge and
the corresponding decision mechanisms are typically found at a higher level in the operating
software stack, for example in the run-time system or the user of a “productivity” language
like Chapel [CCZ07] or SAC [GS06].

This situation thus warrants creating an “abstraction hole,” to delegate to operating
software providers at a higher abstraction level the responsibility to make placement deci-
sions. In this chapter, we illustrate how to achieve this with the proposed architecture in
our interface language SL, previously introduced in chapter 6.

11.2. ON-CHIP WORK PLACEMENT: EXPOSING CONTROL 177

11.2 On-chip work placement: exposing control

11.2.1 Architectural support

The machine interface in chapter 4 was designed with two mechanisms for placement in mind.◯
Historically, the first mechanism was a design-time partitioning of the many-core chip into
statically named clusters. Later on, a flexible dynamic partitioning protocol was introduced∎
as well, which we jointly designed and prototyped with the platform implementers. Both
can be used in combination in a design, where larger, static cluster can be “internally”
divided further at run-time into fine-grained sub-clusters. We detail the latter fine-grained
placement protocol in Appendix E.

In both cases, the “allocate” instruction that reserves bulk creation contexts accepts a
“placement” operand. This is a resource address which triggers remote access, through the
delegation NoC, to the named cluster if the address does not match the local address of the
thread issuing “allocate.” With static clusters, the address corresponds to the master core
connected both to the delegation NoC and its neighbour cores in the cluster; with dynamic
clusters, a virtual cluster address is formed by the address of a first core, together with a
cluster size and security capability, combined in a single integer value.

Jointly to this addressing mechanism for new delegations, two machine instructions “get-
pid” and “getcid” are introduced. “getpid” produces the address of the cluster where the
current thread was delegated to, also called default or current placement. “getcid” produces
the address of the local core within its cluster. To avoid the overhead of extra instructions,
“allocate” also recognizes the symbolic value 0 to implicitly reuse the default placement; and
it also recognizes 1 to use the local core only, i.e. avoid multi-core execution altogether.

With large static clusters, an operating software would likely not bind small computing
activities to the static clusters at a high rate. In other words, the granularity of placement
over large static clusters is coarse enough that this type of placement can be requested via
system APIs. It is the existence of small clusters and the ability to dynamically partition
clusters at run-time, within a few hardware cycles, which justifies the need for low-overhead,
direct access via language primitives.

11.2.2 Language primitives

We propose to transparently pass the run-time value of the “place” family configuration ex-◻
pression, which is the 2nd positional parameter to the “sl_create” construct (clauses I.5.8.1§3
and I.5.8.1§26), as the placement operand of the “allocate” operation. If the place expression
is not provided (it is optional in the input syntax), the value 0 is used. With this translation
in place, a program can specify, at the point of family creation:

• either no place expression at all, which uses the default placement implicitly, or
• one of the symbolic values 0 or 1, which designate the default placement or the local

core explicitly, or
• a fully specified target cluster address.

Separately, we extend the library environment as follows:◻

• we encapsulate the “getpid” and “getcid” machine instructions as C macros, defined
in a SL library header, named “sl_default_placement()” and
“sl_local_processor_address(),” respectively;

178 CHAPTER 11. PLACEMENT AND PLATFORM PARTITIONING

Name Description Cost1

sl_placement_size(C) Number of cores in the cluster C. 2
sl_first_processor_address(C) Address the first core in the cluster C. 2
at_core(P) Address the relatively numbered core P

in the current cluster.
5/6

split_upper() Split the current cluster and address the
upper half.

5

split_lower() Split the current cluster and address the
lower half.

5

split_sibling() Split the current cluster and address the
sibling half from the perspective of the
current core.

11

next_core() Address the next core within the current
cluster, with wraparound.

13

prev_core() Address the previous core within the cur-
rent cluster, with wraparound.

13

1 Number of processor cycles required with the Alpha or SPARC ISAs.

Table 11.1: Core addressing operators in the SL library.

• we define a C typedef name “sl_place_t” wide enough to hold placement addresses.

With these primitives, a thread in the program can read and manipulate its own place-
ment information, for example to compute thread distributions explicitly.

11.2.3 Integer arithmetic to compute placements

A characteristic feature of the proposed protocol in Appendix E is that it exposes the format
of core addresses on the delegation NoC. In contrast to most contemporary systems where
knowledge about the inter-processor fabric is entirely encapsulated in system services queried
via privileged APIs, the proposed protocol allows programs to construct processor addresses
“from scratch” without involving a system service.

To achieve this, the protocol advertises that a valid virtual cluster address is constructed
by concatenating together a security capability1, the address of the first core in the cluster
and the desired cluster size in a single machine word. This encoding creates the opportunity
for programs to compute relative core addresses with the overhead of a few integer arith-
metic instructions. For example, in our work we have captured the common patterns in
table 11.1 as inlineable functions in a SL library header. Their implementation is given in
Appendix E.3.

11.2.4 Example usage: inner product

The abstraction above allows programs to express relative constraints on placement of com-
putations, useful to distribute reductions over variable numbers of cores.

1The capability is optional and can be used by a coarse-grained system service to provide isolation
between computing activities running on separate large-scale core clusters on the chip.

11.2. ON-CHIP WORK PLACEMENT: EXPOSING CONTROL 179

1 double ke rne l 3 (s i ze_t n , double ∗X, double ∗Z)
2 {
3 sl_create (, , , n , , , , innerk3 ,
4 sl_shfarg (double , Qr , 0 . 0) ,
5 sl_glarg (double∗ , , Z) , sl_glarg (double∗ , , X)) ;
6 sl_sync () ;
7 return sl_geta (Qr) ;
8 }
9

10 sl_def (innerk3 , , sl_shfparm (double , Q) ,
11 sl_glparm (double∗ , Z) , sl_glparm (double∗ , X))
12 {
13 sl_index (i) ;
14 // Q += Z[i] ∗ X[i]
15 sl_setp (Q, sl_getp (Z) [i] ∗ sl_getp (X) [i] + sl_getp (Q)) ;
16 }
17 sl_enddef

Listing 11.1: Concurrent SL code for the Livermore loop 3 (inner product).

First processor
in virtual cluster

2nd proc. 3rd proc. 4th proc.
kernel3

F

3

2

1

0

lo
ca

l r
ed

uc
tio

n

F

3

2

1

0

lo
ca

l r
ed

uc
tio

n

F

11

10

9

8

lo
ca

l r
ed

uc
tio

nF

7

6

5

4

lo
ca

l r
ed

uc
tio

n

F

15

14

13

12

lo
ca

l r
ed

uc
tio

n

reductionk3

innerk3

innerk3

innerk3

innerk3

Figure 11.1: Parallel reduction using explicit placement, for problem size n = 16 and a
virtual core cluster containing 4 cores.

The boxes indicate the generated logical thread indexes.

As an example, consider the naive implementation of the vector-vector product in list-
ing 11.1. This defines a C function kernel3 which computes the inner product of the n-sized
vectors X and Z using a single family of threads. Because there is a carried dependency be-
tween all threads, this implementation cannot benefit from multi-core execution: the first
logical thread on every core but the first will wait for the last output from the last logical
thread on the previous core (cf. also side note E.2).

Instead, we can modify this program source using the new placement primitives as in-
dicated in listing 11.2. For clarity, we omit the extra logic necessary to handle array sizes
that are not a multiple of the number of cores. The top-level function kernel3 deploys
two levels of reduction, where all threads at the first level run on the same core, and each

180 CHAPTER 11. PLACEMENT AND PLATFORM PARTITIONING

1 double ke rne l 3 (s i ze_t n , double ∗X, double ∗Z)
2 {
3 s l_place_t p l = sl_default_placement () ;
4 long ncores = sl_placement_size (p l) ;
5 long span = n / ncores ;
6

7 pl = s l_f i r s t_proce s so r_addre s s (p l) | 1 /∗ f o r c e s i z e 1∗/ ;
8

9 sl_create (, /∗ l o c a l placement : ∗/ 1 ,
10 0 , ncores , 1 , , , reduct ionk3 ,
11 sl_shfarg (double , Qr , 0 . 0) ,
12 sl_glarg (double∗ , , Z) , sl_glarg (double∗ , , X) ,
13 sl_glarg (long , , span) , sl_glarg (sl_place_t , , p l)) ;
14 sl_sync () ;
15

16 return sl_geta (Qr) ;
17 }
18

19 sl_def (reduct ionk3 , , sl_shfparm (double , Q) ,
20 sl_glparm (double∗ , Z) , sl_glparm (double∗ , X) ,
21 sl_glparm (long , span) , sl_glparm (sl_place_t , p l))
22 {
23 sl_index (cpuidx) ;
24

25 long lower = sl_getp (span) ∗ cpuidx ;
26 long upper = lower + sl_getp (span) ;
27

28 sl_create (, sl_getp (p l) + cpuidx ∗ 2 ,
29 lower , upper , 1 , , , innerk3 ,
30 sl_shfarg (double , Qr , 0 . 0) ,
31 sl_glarg (double∗ , , sl_getp (Z)) , sl_glarg (double∗ , , sl_getp (X))) ;
32 sl_sync () ;
33

34 sl_setp (Q, sl_geta (Qr) + sl_getp (Q)) ;
35 }
36 sl_enddef

Listing 11.2: Concurrent SL code for the Livermore loop 3, optimized.

11.2. ON-CHIP WORK PLACEMENT: EXPOSING CONTROL 181

������

� ������� ������� ������

� ������� ������ ������

� ������� ������ ������

� ������� ������ ������

�� ������� ������ ������

�� ������� ������ ������

�� ������� ������ ������

�������	����� ����� ����	������� ������ ����� ��������

������	 !	"� ��$�	��%�#� &' (�����	��%

��� ��# �%� ��� ��# �%�

#� #)�

�#� ��# �%� �#� ��# �%� ��� ��# �%�

� � � � �� �� ��

�

������

������

������

������

�������

�������

�������

��$�	��%�#� � &' (�����	��%�#� �
������

������	 !	"� #��� ��	�	$�����	#������

*
�
#
)
	#
+
#
��
�
	�

	�
�
�
�
��

Figure 11.2: Performance of the Livermore loop 3.

family created at the second level runs on a different core within the cluster. The resulting
placement at run-time is illustrated in fig. 11.1.

The effect of this strategy on performance is given in fig. 11.2. To obtain these results,
we ran the kernel on different virtual cluster sizes, with the input n = 64000. As described
further in section 13.2 and table 13.1, the microthreaded cores run at 1GHz and the baseline
is a sequential program running on 1 core of an Intel P8600 processor at 2.4GHz.

As can be observed, the parallel reduction is advantageous and offers a performance
improvement over the baseline past 32 core. As described later in chapter 13, microthreaded
cores are expected to be significantly smaller in area than cores in the baseline architecture.
The performance per unit of area on chip therefore compares advantageously. Moreover,
the proposed design does not use speculation, which suggests that the performance per watt
may also be lower. At any rate, multi-core scalability is achieved without a priori knowledge
about the number of cores while writing the program code.

11.2.5 Relationship with memory consistency

Regardless of how heterogeneous a chip is, and thus how much information on-line resource
managers must maintain (cf. section 2.4), a general-purpose, multi-core chip must expose
the accessibility of memory from processors as a basic property of the system. Indeed, the
topology of the memory network impacts the implementation of operating software at all
layers of the abstraction stack, as we outlined in section 3.4.1 and chapter 7.

This is mandatory even for so-called “shared memory” chips, because as we explained
previously in chapter 7, upcoming and future chip design may feature weak consistency
models as an opportunity to simplify and optimize cache coherency protocols. As multiple
consistency granularities start to appear, the distributed nature of many-core chips becomes
unavoidable to the operating software providers [BPS+09].

To characterize these aspects in a language abstract machine, we introduced the notion
of Implicit Communication Domain (ICD) and Consistency Domain (CD) in section 7.3.
These describe subsets of a platform where implicit communication between memory store
and load operations is possible between asynchronous threads. Communication is fully

182 CHAPTER 11. PLACEMENT AND PLATFORM PARTITIONING

implicit within a CD, whereas it requires some semi-explicit coherency actions in a ICD.
Across ICDs, the memory address space is not shared. For example, a Symmetric Multi-
Processor (SMP) system with full cache coherency would form a single CD and ICD; different
nodes in a distributed cluster would form distinct ICDs; and nodes in a distributed cache
system2 may form a single ICD but distinct CDs.

The placement operators we introduced in the previous sections are tightly related to
the memory topology. Indeed, a program code which assumes a single CD cannot safely
spread work across a virtual core cluster spanning multiple distinct CDs. For example, on
the reference implementation of the proposed architecture, coherency between L1 caches
sharing a single L2 cache uses a fully coherent snoopy bus, whereas coherency between L2
caches is lazy: writes may not be propagated to other L2 caches until a thread terminates.
This implies that a group of cores sharing the same L2 cache form one CD, but separate L2
caches form separate CDs. A program wishing to use implicit memory-based communication
between separate threads, without resorting to explicit memory barriers, must thus ensure
that the threads are assigned to cores sharing a single L2 cache. How should this knowledge
be negotiated between the hardware implementation and the operating software?

As a first step in this direction, we propose the following two primitives:◻

• local_consistent_cluster(C): for a given cluster address C, produce the address of
the largest cluster that encompasses C but provides a single CD. For example, on the
proposed architecture this would evaluate to an address for the local L2 core group,
whereas on a conventional SMP this would evaluate to an address for the entire local
system.

• local_implicit_cluster(C): for a given cluster address C, produce the address of
the largest cluster that encompasses C but provides a single ICD. For example, on the
proposed architecture this would evaluate to an address for the entire chip, whereas
on a distributed chip with separate local memories for each core this would evaluate
to an address for the local core only.

We propose that these primitives be used in the run-time system of a higher-level pro-
gramming language, to select at run-time which implementation to run (whether suitable
for a single CD or multiple) depending on the actual resources available locally to a compu-
tation.

11.3 On-chip work placement: how to exploit

The primitives provided so far allow a program to control thread placement within a virtual
cluster at run-time, including partitioning an existing virtual cluster into physically separate
sub-clusters. With the proposed encoding of addressing information, the corresponding
operations can be carried out within a few pipeline cycles. This suggests a high level of
dynamism, where placement can be decided at a fine grain in algorithms at run-time.

11.3.1 Related work

We have found similar considerations about on-chip placement in the three high-productivity
languages for large parallel systems produced during the DARPA project High Productivity

2For example: http://msdn.microsoft.com/en-us/magazine/dd942840.aspx, http://www.
sharedcache.com/cms/, http://www.linuxjournal.com/article/7451

http://msdn.microsoft.com/en-us/magazine/dd942840.aspx
http://www.sharedcache.com/cms/
http://www.sharedcache.com/cms/
http://www.linuxjournal.com/article/7451

11.3. ON-CHIP WORK PLACEMENT: HOW TO EXPLOIT 183

Computing Systems [DGH+08]: Sun’s Fortress [ACH+08], Cray’s Chapel [CCZ07], and IBM’s
X10 [CGS+05]. We describe them below.

Also, we supervised an application of our proposal for cross-domain consistency to dis-
tributed clusters, which we describe as related work in section 11.3.1.3.

11.3.1.1 Relationship with Chapel and Fortress

Virtual clusters in our setting correspond closely to the concept of locales in Chapel and
regions in Fortress:

In Chapel, we use the term locale to refer to the unit of a parallel architecture that
is capable of performing computation and has uniform access to the machine’s
memory. For example, on a cluster architecture, each node and its associated
local memory would be considered a locale. Chapel supports a locale type and
provides every program with a built-in array of locales to represent the portion of
the machine on which the program is executing. [...] Programmers may reshape
or partition this array of locales in order to logically represent the locale set as
their algorithm prefers. Locales are used for specifying the mapping of Chapel
data and computation to the physical machine [...]. [CCZ07, p. 13]

A locale is a portion of the target parallel architecture that has processing and
storage capabilities. Chapel implementations should typically define locales for a
target architecture such that tasks running within a locale have roughly uniform
access to values stored in the locale’s local memory and longer latencies for
accessing the memories of other locales. As an example, a cluster of multi-core
nodes or SMPs would typically define each node to be a locale. In contrast a pure
shared memory machine would be defined as a single locale. [Cra11, Sect. 26.1]

Every thread (either explicit or implicit) and every object in Fortress, and every
element of a Fortress array (the physical storage for that array element), has
an associated region. The Fortress libraries provide a function region which
returns the region in which a given object resides. Regions abstractly describe
the structure of the machine on which a Fortress program is running. They
are organized hierarchically to form a tree, the region hierarchy, reflecting in an
abstract way the degree of locality which those regions share. The distinguished
region Global represents the root of the region hierarchy. The different levels of
this tree reflect underlying machine structure, such as execution engines within
a CPU, memory shared by a group of cores, or resources distributed across the
entire machine. [...] Objects which reside in regions near the leaves of the tree are
local entities; those which reside at higher levels of the region tree are logically
spread out. [ACH+08, Sect. 21.1]

Like with locale and region variables in Chapel and Fortress, our approach allows pro-
grams to manipulate clusters of cores using an abstract handle (a virtual cluster address
in our setting). We also suggest in our reference implementation a form of data locality
between cores within a locale (cf. fig. 3.9). Furthermore, both Chapel and Fortress pro-
vide explicit placement of computations on named locales/regions (with the keyword on in
Chapel, at in Fortress) and relative addressing via the special name “here,” which corre-
sponds to sl_default_placement() in our setting.

184 CHAPTER 11. PLACEMENT AND PLATFORM PARTITIONING

Neither Chapel nor Fortress formalize a consistency model for concurrent accesses to
memory, like we do. Moreover, our questions about the acquisition of additional resources
and how to determine appropriate cluster sizes, mentioned above, do not have an answer in
Chapel nor Fortress either.

Despite these similarities, both Chapel and Fortress are considerably more mature with
regards to data locality. In particular, both languages define primitives that allow pro-
grams to assign variables, especially arrays, to named virtual core clusters. When these
constructs are used, any computation using these variables is implicitly distributed across
virtual clusters so that each unit of computation becomes local to its operands.

In our setting, this feature is not available natively: variables are either defined in the
global scope, in which case they are shared by all clusters visible to the program, or in the
local scope, in which case they are only conceptually local to the thread where they are
defined and all other threads running on the same core.

In practice, memory locality is obtained automatically by any thread on its local core in
our reference implementation, because as seen above this uses a distributed cache protocol
which migrates cache lines automatically to the point of last use. However the work on
Chapel and Fortress suggests that explicit control of memory placement may be desirable in
the language semantics. Moreover, explicit data placement could provide a reliable handle
on allocation if our architecture were extended to support multiple distributed memories on
chip. We consider this further in section 11.3.1.3.

11.3.1.2 Relationship with X10

Places in IBM’s X10 are similar to Chapel’s locales and Fortress’ regions:

A place is a collection of resident (non-migrating) mutable data objects and the
activities that operate on the data. Every X10 activity runs in a place; the
activity may obtain a reference to this place by evaluating the constant here.
The set of places are ordered and the methods next() and prev() may be used
to cycle through them.

X10 0.41 takes the conservative decision that the number of places is fixed at
the time an X10 program is launched. Thus there is no construct to create a
new place. This is consistent with current programming models, such as MPI,
UPC, and OpenMP, that require the number of processes to be specified when
an application is launched. We may revisit this design decision in future versions
of the language as we gain more experience with adaptive computations which
may naturally require a hierarchical, dynamically varying notion of places.

Places are virtual — the mapping of places to physical locations in a NUCC
system is performed by a deployment step [...] that is separate from the X10
program. Though objects and activities do not migrate across places in an X10
program, an X10 deployment is free to migrate places across physical locations
based on affinity and load balance considerations. While an activity executes at
the same place throughout its lifetime, it may dynamically spawn activities in
remote places [...] [CGS+05, Sect. 3.1]

Like Chapel and Fortress, X10 allows both explicit assignment of computations and
data to processing resources, and the local sub-partitioning of resources. With regards to

11.3. ON-CHIP WORK PLACEMENT: HOW TO EXPLOIT 185

consistency, X10 defines places as sequentially consistent, which in our model would translate
as a constraint that core clusters do not span multiple consistency domains.

The new concept with X10 is the run-time mapping of virtual places (visible by programs)
and physical resources (invisible by programs). This reduces the amount of knowledge about
the environment provided to programmers but creates the opportunity to optimize load
balance at run-time outside of the program specification.

It is conceptually possible to introduce this feature in our setting by indirecting every
bulk creation through a system service in charge of placement, which would hold the mapping
between place identifiers (manipulated by the program) and physical cluster addresses. The
trade-off of this approach is a mandatory overhead at each bulk creation, which would defeat
the benefit of architectural support for the effective parallelisation of small workloads. This
observation highlights the fact that the primary benefit of hardware support for concurrency,
that is low overheads for concurrency creation and synchronization, can only be reaped in
applications if the program has direct access to the machine interface.

11.3.1.3 The Hydra run-time

Under our supervision, the author of [Mat10] has thoroughly investigated the use of the
proposed consistency semantics across clusters of SMPs. In this work, more SL language
primitives have been designed which integrate consistency semantics, placement and object
(data) declarations.

This work extends the vision that data should be migrated automatically to the point
where it is used, to provide locality implicitly. In contrast to the three “high-productivity”
languages mentioned above, the proposed language semantics provide a placement-neutral
declaration for variables, and provides instead explicit declarative constructs to inform the
run-time system where data may be needed. The run-time system then exploits this infor-
mation to determine the minimum amount of necessary communication sufficient to satisfy
the consistency semantics assumed in the program. For example, when multiple logical
threads explicitly declare inter-domain communication for different subsets of a data item,
the run-time system automatically merges these declarations during execution so that only
one communication event occurs per node for all logical threads sharing a view on the data
item.

11.3.2 Open questions to operating software providers

If the proposed fine-grained interface to placement is to be adopted, operating software▷
providers will need to answer the following questions:

• how does a program obtain access to a virtual cluster initially? Implicitly, we have
assumed so far that the top-level thread(s) of a program are placed at some virtual
cluster by an “operating system” upon program start-up. With the proposed language
constructs, a program can then address cores within this initial cluster. However,
system services must be designed to gain access to additional clusters if automatic
scalability to varying resource availability is desired.

• in an attempt to answer the previous question in our own work, we have prototyped a
cluster allocation service able to partition the entire chip into sub-clusters on demand.
However, we could not find a satisfying protocol to query this service: what should be
its request parameters?

186 CHAPTER 11. PLACEMENT AND PLATFORM PARTITIONING

Our naive initial choice was to define a “desired number of cores” and “whether a single
consistency domain is desired” as request parameters. However, this was misdirected:
programmers and operating software abstractions do not reason in terms of number
of cores and consistency domains; instead, they have real time constraints (e.g. guar-
anteed minimum throughput on an algorithm) or optimization goals (e.g. maximize
the throughput on an algorithm). We are not aware of any existing methodology to
translate these requirements to placement requests at a fine grain.

• in more general terms, can application-level extra-functional requirements on through-
put and latency be expressed only as constraints on the number and location of cores
involved? The proposed architecture tries hard to achieve this simplification with its
distributed cache, which conceptually provides a uniform view over a shared off-chip
backing store and isolates traffic between separate core clusters using a hierarchical
topology (cf. section 3.4.1).
However, we did not find any results that suggest that these properties hold in an
actual implementation for larger number of cores. Quite the contrary, using the im-
plementations described in section 4.7 we observed memory bandwidth and latency
interference between independent core clusters. We thus cannot exclude that future
many-core chips will feature Non-Uniform Memory Access (NUMA) topologies with
load-dependent bandwidth and latency properties. Were this to happen, the com-
munication activity between program components must be characterized and taken
into account by the operating software infrastructure. This would in turn imply that
operating software providers will require to know about the semantics of memory con-
sistency protocols on chip, and language designers will need to derive communication
requirements between units of work expressed to run concurrently in program source
code. We are not aware of any coordinated approach in that direction at the time of
this writing.

Nevertheless, the integration of placement at the machine interface creates a common
vocabulary to reason and talk about these issues between operating software providers. Such
a common ground is sorely missing in current architectures, where issues of work placement
are resolved using different abstractions in each operating software environment, and are thus
difficult to compare analytically. We should thus expect that a common set of primitives
will facilitate further research activities.

Summary

In this chapter, we have introduced preliminary support for explicit placement of computa-◯∎
tions to clusters of cores defined dynamically. This support is sufficient to control thread◻
placement in operating software and accelerate multi-stage parallel computations. It also
avoids requiring programmers or code generators to make assumptions about the overall
topology of the system.
We have also isolated further research questions that must be answered before a full integra-▷
tion of these primitives into higher-level abstractions can be achieved. By studying related
work we observe that these questions have not yet been fully answered by other modern,
contemporary parallel programming languages; we suggest that common abstractions in the
machine interface will facilitate future research in this area.

Chapter 12

Issues of generality

Abstract

In section 1.4.3, we have highlighted that innovation in computer architecture is
composed of two parts, one that answers the “inner question” by designing the substance
of the innovation, and another that answers the “outer question” which places the in-
novation into its context for consideration by external observers. In [Lan07, Lan1x],
the author answers the inner question for hardware microthreading in depth, by de-
tailing the hardware design and intrinsically demonstrating its behavior. As part of
our process to answer the outer question, we have exposed so far the features of the
design visible from software, which we will illustrate in the context of existing software
ecosystems in part III. There is however one aspect not covered by the previous chap-
ters of this dissertation nor [Lan07, Lan1x]: the argument to the audience about the
generality of the invention. In this chapter, we argue that the proposed design provides
fully general cores and is suitable to support most parallel programming patterns.

Contents
12.1 Introduction . 188
12.2 Turing-completeness: one and also many . 188
12.3 Abstract concurrency models . 189
12.4 Turing completeness, take two . 195
12.5 Exposing the generality to software . 196
12.6 Generality in other designs . 197
Summary . 198

187

188 CHAPTER 12. ISSUES OF GENERALITY

12.1 Introduction

We consider two levels of generality. The first level is common to any microprocessor design:
show whether the proposed design is fit for use for true general-purpose computing, and how
the interactive Turing machine is approximated. This reflects the requirements set forth in
sections 1.2.1 and 1.3. The second level is specific to a design that offers a parallel execution
environment: define what the abstract semantics of communication and synchronization
are, how new processes and channels are defined, and what are the conditions under which
deadlock freedom and progress are guaranteed.

Usually, in computer architecture, the ancestry of a new component is sufficient to argue
for its generality: a new pipeline that supports control flow preemption via interrupts and
is connected to a sufficiently large RAM is conceptually sufficiently close to all previous
microprocessor designs that its generality can be implicitly inherited. Usually, universal and
interactive Turing-completeness for individual pipelines stems from conditional branches and
the RAM interface to both storage and external I/O, whereas generality relative to parallel
execution comes from the availability of time sharing and virtual channels over a consistent
shared memory. However, the situation is not so clear if some features are omitted relative to
previous approaches, or in the presence of hardware parallelism. For example, the proposed
design from part I does away with control flow preemption and consistent shared memory:
can it still be used to support general concurrency patterns? It also supports orders of
magnitude more concurrent threads than in existing processor designs: what is the cost to
guarantee access to a private memory on each individual thread, as required to guarantee
Turing-completeness?

An argument for generality can be constructed either by showing that a new design can
be described by one or more of the existing theoretical models, or can simulate arbitrary
programs expressed using these models. Turing-completeness has the Turing machine, λ-
calculus or queue machines, as seen in section 1.2.1. For concurrent execution, one can use
Hoare’s Communicating Sequential Processes (CSP) [Hoa78], Hewitt’s Actors [HBS73] or
Milner’s π-calculus [MPW92a, MPW92b].

In doing so, the finiteness of resources in a concrete implementation should be acknowl-
edged. In general, when some property of an abstract model is dependent on the recur-
sive unfolding of a theoretically unbounded inductive abstract rule, for example the arbi-
trary scrolling of the tape in a Turing machine, or a property over the replication operator
!P = P ∣P ∣P... in the π-calculus, the argument about an actual design must show which con-
crete resource supports the unfolding and which implementation parameter(s) can be tuned
to approximate an arbitrarily large specification of a program in the abstract model. In par-
ticular, the simulation should be complexity-preserving : a basic operation of the simulated
model with a constant time and space cost should have a constant maximum time and space
cost in the simulation.

As parting words on the topic of the inner question around hardware microthreading,
this chapter argues for this generality in the proposed innovation.

12.2 Turing-completeness: one and also many

The generality of the design in part I can be directly derived from the generality of one◻
individual thread context on chip. As the proposed innovation reuses a standard RISC
pipeline, including its support for conditional branches and its memory access instructions,
and execution using only thread has access to the entirety of the arbitrarily large external

12.3. ABSTRACT CONCURRENCY MODELS 189

Side note 12.1: Implementation-independent interleaving.
Our proposed interleaving of N abstract tapes into one is only valid if an upper bound for N is known.
As is, our scheme is thus implementation-dependent. However there also exist implementation-independent
interleavings. For example, the bits of the context address and the bits of the memory address can be
interleaved, as suggested by Morton [Mor66] and Pigeon [Pig01, Sect. 5.3.6.3, p. 115]. The ability to
interleave is thus implementation-independent.

memory, the thread can be described by (and simulate) a universal Turing machine, with
intuitive cost properties.

An issue arises when considering multiple thread contexts executing simultaneously. For
each context to be Turing-complete, all must have access to their dedicated, private region
of memory to simulate their Turing machine’s tape. As illustrated in chapter 9, this can
be achieved by splitting the logical address space of the entire chip by the actual number
of thread contexts on the chip. Other such interleavings can be constructed for any system
implementation (cf. side note 12.1). If there are N thread contexts, a Turing machine of
any degree of complexity can be implemented by any thread context independently from
all others by growing the external memory accordingly by a factor N . This simulation
of private memories is further complexity-preserving, assuming the back-end RAM system
provides independent, bounded access times to all memory locations.

Finally, we highlight that Turing-completeness is not sufficient per se; as mentioned in
section 1.2.1, threads should also support interaction, i.e. the ability to interact with the
outside world besides RAM. Yet the design from chapter 3 proposes that only some cores
are connected to an external I/O interface. For the other cores, the argument for generality
can be constructed as follows: as long as an operating software proposes an I/O forwarding
service to all cores, where an I/O read or write access from any thread can be delegated,
via TMU events over the chip, to a core with physical access to I/O devices, then all cores
can be considered general. This simulation of interaction for all cores can further be made
complexity-preserving by ensuring that the I/O forwarding services have a fixed overhead,
i.e. with a maximum added I/O latency and space requirement for management data struc-
tures; this property was e.g. achieved in our implementation of POSIX system services
(cf. section 6.4.2); the distributed operating systems Barrelfish [SPB+08] and fos [WA09]
also support this pattern.

12.3 Abstract concurrency models

12.3.1 Prior work

In [BBG+08, Jes08b, vTJ11, vTJLP09] and other publications, the authors introduce “SVP,”◯
a “general concurrency model” derived from hardware microthreading. This model describes
the behavior of a program in term of concurrent families of threads that are dynamically
created and synchronized upon by individual threads. It also defines dataflow channels
between threads directly related by family creation, and an asynchronous shared memory
where the visibility of writes relative to loads is only guaranteed by family creation and
synchronization.

In [VJ07], the authors project the semantics of SVP onto thread algebra [BM07] to
demonstrate deadlock freedom under at least the following conditions:

• families are created and synchronized upon by the same parent thread;

190 CHAPTER 12. ISSUES OF GENERALITY

• all actions other than reading from a channel are not blocking;
• the dataflow channels are connected so that the directed dataflow graph is acyclic, a
thread may only be waiting for a data produced by its predecessors, and all channels
are provisioned with a value by their source thread after the source thread has received
a value from its predecessor threads.

Furthermore, [VJ07] shows that SVP is deterministic with regards to the values emitted on
its dataflow channels and the values written to memory when the program is both deadlock
free and race free.

Finally, SVP disallows arbitrary point-to-point communication. Dataflow channels are
only connected between a parent thread and the families it directly creates. Communication
via memory between concurrent threads is in turn disallowed by stating that writes by one
thread are only visible to loads by itself and its successor threads: either those created as
new families by the writer thread, or the parent thread after the writer’s termination. As
such, SVP cannot be used to simulate arbitrary concurrency patterns from CSP, Actors or
π-calculus.

This abstract model assumes unbounded resources, in particular that threads can com-
municate over an arbitrary number of channels and that the creation of a family is a non-
blocking operation that always succeeds. As we discussed in chapters 4, 8 and 10, this
assumption does not hold for the proposed hardware design, where the maximum number
of dataflow synchronizers and bulk synchronizers are bound by physical resources on chip.

To increase the number of channels that can be defined from SVP’s perspective, we
defined in chapter 8 a method to “escape” channels as slots on the activation records of
thread programs. This simulation is also complexity-preserving since each communication
operation is simulated by a fixed number of memory addresses and a fixed number of memory
stores and loads. However, using this method an arbitrary number of channels can only be
created if the thread context performing a family creation has access to an arbitrarily large
private memory. For the scheme to work from any context, every context must have access
to an arbitrarily large private memory.

Similarly, to increase the number of families that can be created from SVP’s perspective,
we defined in chapter 10 a method to “escape” creation as a sequential procedure call. Again,
this simulation is complexity-preserving as each family creation translates to a fixed number
of memory addresses and operations. However, using this method an arbitrary number of
families can only be created if the first thread context where hardware creation fails supports
an arbitrary recursion depth. For the scheme to work from any thread context, an arbitrary
sequential recursion depth must be available everywhere. Also, this method only works
because the behavior of any family in SVP is serializable into a sequential process.

We highlight that the abstract definition of SVP in [VJ07] and other previous publi-◻
cations did not mention explicitly their requirement on arbitrary large private memories
and recursion depths from individual SVP threads. As we showed here, these features are
mandatory if SVP is to be simulated by a platform with a finite number of concurrency
resources. Conversely, if an implementation does not offer arbitrarily large memory and
recursion depth per thread, then it does not simulate SVP and is not free of deadlock even
when all dataflow channels are provisioned. Of course, if all thread contexts are otherwise
Turing-complete, for example as discussed above in section 12.2, both escape mechanisms
are implementable and the system can simulate SVP completely.

12.3. ABSTRACT CONCURRENCY MODELS 191

12.3.2 Communicating sequential processes

We postulate that the proposed hardware design can simulate the semantics of Hoare’s CSP
in the form described in [Hoa85]. Unfortunately, we have not yet demonstrated this formally;
this section merely argues that the platform goes a long way towards supporting CSP, which
the SVP model above does not. If the platform can run CSP programs, software audiences
can gain confidence that it can also support existing programming abstractions based on
CSP such as Occam [MS90], Erlang [AVWW96] or MPI [Mes09].

We consider here only CSP programs that define up to N processes, where N is the
number of thread contexts available in the platform. We place this restriction because
supporting more than N processes would require interleaving of multiple CSP processes over
single thread contexts, which the architecture does not currently support (cf. section 3.3.2).
We do not consider this as a strong restriction however: the reference platform we used for
evaluation (cf. table 13.1) supports at least 4000+ simultaneously running thread contexts1.
Further technology advances will likely allow the implementer to increase this limit further.

CSP further exhibits the following features:

• processes can communicate over named channels;
• communication is synchronous, i.e. sending a value in one process and receiving a value

in another are a rendezvous;
• each process can name (and thus use) an arbitrarily large, but statically known set of

channels;
• processes communicate values over channels, and values can be neither channel names

nor processes;
• choice: processes can wait for an event from two or more channels simultaneously and

react as soon as any one channel has an event available;
• channels support communication only in one direction and between two processes [Hoa85,

Sect. 4.2, p. 114];
• processes can recurse and activate new processes at every step of the recursion2;
• concurrent events that do not synchronize processes can proceed concurrently.

Per-process recursion stems from the Turing-completeness of individual thread contexts,
discussed previously. The activation of new processes can in turn be implemented using the
concurrency management services of the TMU introduced in section 3.3.1. Since separate
thread contexts are independently scheduled (cf. section 3.2.1), concurrency of CSP processes
mapped to separate thread contexts is guaranteed.

Not considering CSP’s support for choice, point-to-point communication can be imple-
mented by the platform’s synchronizers and the remote register access primitives of the
TMU, described in chapter 3. More specifically, one channel between two processes can
be implemented by using two synchronizers at each endpoint, using remote writes to one

1It actually supports up to 32000+ contexts if some of them consume less dataflow synchronizers per
context than the number allowed by the ISA (cf. section 3.3.3 and chapter 8). However, the number of
independent thread contexts is also bound by the number of bulk synchronizers, 32 per core in the reference
implementation. Unless multiple CSP processes can be instantiated in a single bulk creation, the number of
bulk synchronizers bounds the maximum number of CSP processes that can be created.

2In his original paper [Hoa78], Hoare recognized that the semantics of CSP allowed programs to dy-
namically create new processes but was reluctant to encourage the use of this feature. In the later CSP
book [Hoa85], dynamic process creation was explicitly allowed and a note was simply added at the end that
some implementations, in particular Occam on the Transputer [MS90] could not create arbitrary numbers
of new processes dynamically [Hoa85, Sect. 7.3.6, p. 225].

192 CHAPTER 12. ISSUES OF GENERALITY

synchronizer to transmit data and remote writes to the other for acknowledgements. This
direct mapping of CSP channels to pairs of hardware synchronizers supports at most L/2
channels, where L is the number of private synchronizers allocated for the thread context
(cf. chapter 8); it is complexity-preserving since each CSP communication is simulated by a
fixed number of synchronizing operations.

Simple pairs of synchronizers cannot implement CSP’s choice operation. Choice cannot
be implemented over multiple synchronizers, because one thread can wait on at most one
synchronizer at a time. Choice from multiple channels cannot be implemented over a single
synchronizer either, because concurrent remote register writes to the same target register
yield undefined behavior: they are resolved non-deterministically, and the receiving thread
does not know that more than one event has been delivered, incurring event loss.

To implement choice, communication must be lifted to active messages [vECGS92] in-
stead: sending a message by a CSP thread over a CSP channel must be implemented on our
platform by sending a request to create a new thread at the core of the receiving thread.
The new thread runs a dedicated “remote delivery” thread program which then stores the
value, at the target core, into some incoming buffer and wakes up the thread(s) waiting
for input from the CSP channel. This simulation is intuitively complexity-preserving. This
basic idea then raises two issues.

The first issue is how to guarantee that there is always a thread context available to
receive incoming active messages. This can be obtained by pre-allocating a context on each
core prior to program start-up using the TMU’s “allocate” event, then storing the context
addresses into an array visible from all cores. Then each core willing to communicate would
look up the context address from the address of the target core, and send an active message
by sending the TMU’s “create” event followed by “sync” to the pre-allocated context. “Sync”
is required because CSP communication is synchronous: the sender thread must wait until
reception is acknowledged by the target mailbox.

The second issue is how to wake up one thread from another on the same core. To
implement this, a thread that wishes to wait on one or more channel(s) can reserve a single
synchronizer R locally, then set the state of R to empty, then write the address of R and
the identities of the channel(s) it wishes to wait on in local memory at a location visible
from the remote delivery threads on the same core, then start reading from R which causes
the thread to suspend. All these primitives can be implemented using the interfaces from
chapter 4. When a remote delivery for a given channel arrives at a core, its thread program
first reads the synchronizer addresses R1,R2 . . . for that channel from local memory (there
may be multiple processes waiting on the same channel), then sends TMU remote register
writes of the incoming value to all R1,R2 . . . addresses via the core’s loopback NoC interface.
Atomicity of access to the memory structures between threads on one core can be negotiated
using any of the mechanisms introduced in section 14.1.

The mechanisms introduced above effectively implement arbitrary virtual channels be-
tween thread contexts, using one mailbox per core that can be implemented in a local
memory. It therefore lifts the limitation on the number of channels introduced above by the
direct use of synchronizer pairs. The total number of channels that can be read from in a
process is only bound by the size of the local memory at the process’ core.

To summarize, the proposed platform is likely as powerful as Hoare’s CSP, and our◻
proposed simulation of CSP uses only the concurrency control primitives offered by the
TMU without requiring a single memory system shared by all cores. It is also universal
since the definition of processes and channels can be described fully in software.

12.3. ABSTRACT CONCURRENCY MODELS 193

12.3.3 Actors

In contrast to Hoare’s CSP, the Actor model introduced by Hewitt [HBS73] and developed
by Agha [Agh85] is relatively simple:

Actors are computational agents which map each incoming communication to a
3-tuple consisting of:

1. a finite set of communications sent to other actors;
2. a new behavior (which will govern the response to the next communication

processed); and,
3. a finite set of new actors created.

When an actor receives a message, the system spawns a task which computes this 3-tuple.
The Actor model does not mandate a specific computational power for the implementation
of individual tasks, although [Agh85] suggests that tasks can at least perform arithmetic
and simple conditionals.

Communication between actors is further defined to be asynchronous, that is, an actor is
immediately ready to accept a new message after sending a message irrespective of whether
the target actor(s) have already processed the communicated event. An actor can only
communicate with another target actor if it previously knows its mail address, i.e. there
is no global name space of actors. Each new actor causes the appearance of its own new
mailing address, which is known to the creating or created actor, or both.

Following the discussion on CSP above, we can argue that the proposed platform from
part I can implement a system of actors. To describe a single actor, an implementation can
use a data structure on a local memory on one core which contains a pointer to the task
program and its initial parameters, provided when the actor was created. An actor mail
address is then composed by pairing the address of the core and the local address of the
actor data structure on that core. Then the mailbox mechanism introduced in section 12.3.2
is reused: when a task wishes to send a message to a actor whose address it knows, it sends a
“create” TMU event to the target core, providing the local address of the actor’s structure as
functional argument of the “create” message, and the pointer to a “remote delivery” thread
program. The task needs not use “sync” since actor communication is asynchronous. On
the target core, the “remote delivery” thread program in turn looks up the actor structure
from the provided address in its local memory, then creates (possibly locally) a new thread
running the task program specified in the actor structure. It also provides as arguments to
the task both the initial actor parameters and the actual payload of the received message.
The remote delivery thread can then terminate without waiting on the created task.

To define the “next behavior” of its actor, a task simply overwrites the task and param-
eters in its own actor’s data structure.

Finally, a task that wishes to create a new actor simply requests allocation of an actor
data structure from the environment. In [Agh85] the author leaves open where the environ-
ment should create the actor physically, so an implementation on our platform could choose
any core on the system that has some free local memory remaining.

Using these mechanisms, the maximum number of actors that can be active at the same
time is bounded by the number of independent thread contexts, e.g. 4000+ in our reference
implementation. However, the maximum number of actors that can be defined, as well as
the maximum number of messages in-flight between actors, is bounded only by the total
capacity of the private memory reachable by each core in the system. This can either be

194 CHAPTER 12. ISSUES OF GENERALITY

bounded by on-chip memory capacity if cores use local scratchpads, or become arbitrarily
large using the techniques from chapter 9. This simulation is complexity-preserving for the
behavior of individual actors if the actor tasks are run natively by hardware threads. It can
also be made complexity-preserving for communication if a bound is set on the maximum
number of actors, so that the look up process at each mailbox has a bounded maximum
space and time cost.

To summarize, we can construct a simulation of the Actor model on the proposed plat-◻
form using only TMU primitives and local memories at each core. Our simulation fully
exploits the opportunities offered by actors for concurrent execution, both from the behav-
ior independence of distinct actors and the asynchrony of communication. It is furthermore
universal since actors can be described fully in software.

12.3.4 π-calculus

Milner’s π-calculus is a development from Milner’s own Calculus of Communicating Systems
(CCS) [Mil80], developed concurrently to Hoare’s CSP.

Because CCS and CSP where both inspired from the zeitgeist of their times, they share a
number of similarities: processes communicate over channels, communication is synchronous,
processes can be combined concurrently or via the choice operator, and recursions of concur-
rent process definitions are allowed. One of the main differences between CCS and CSP is
that CCS offers a restriction operator, which allows a group of processes to bind a channel
name to a private channel not visible by other process groups. In contrast, in CSP the
channel name space is shared by all processes.

As in CSP, in CCS channels and processes are in name spaces distinct from the values
communicated over channels. The main extension of the π-calculus over CCS was to allow
channel names as communicated values. Moreover, the π-calculus supports arbitrary N -to-
M communication over single channels.

As in section 12.3.2, we postulate that the proposed platform from part I can simulate
the semantics of the π-calculus as described in [MPW92a, MPW92b]. Again, we have not
yet demonstrated this formally but we are able to argue so based on simulations.

We start by observing that we cannot directly reuse the simulation infrastructure intro-
duced in section 12.3.2. Although our proposal for CSP can be trivially extended to support
a dynamically evolving number of channels, and although the identity of channels could
be communicated as values, it binds the receiver endpoint of a channel to a specific core
address on chip, where the receiving process is running. This is needed because the active
message implementing remote delivery must be addressed to an explicit location on chip.
Moreover, so far we considered only one sender and one receiver per channel. In contrast, in
the π-calculus, any process can send or receive from a channel whose name it knows. Our
previous mailbox-based system which assumes that receiving threads are on the same core
as the mailbox does not support this.

Instead, we can implement a forwarding service as follows. Any time a process in the
π-calculus defines a new channel, its implementation as a thread would send a request at
a commonly agreed “channel management” service in the system that would allocate a new
channel data structure in the local memory of an arbitrarily selected core in the system to
serve as shared mailbox. Any subsequent operation that sends a channel identity would
then communicate the address of the shared mailbox to the receiver process(es); any time a
process receives a channel identity, it would receive the address of the corresponding shared

12.4. TURING COMPLETENESS, TAKE TWO 195

mailbox service and would then inform the shared mailbox that it is now a candidate receiver
for that channel. This technique is inspired from the IPv6 “home routing” protocol [PJ96].

Subsequently, any communication over the channel would cause two communications,
one from the sender thread to the shared mailbox, then from the shared mailbox to the local
mailbox of the candidate receiver process(es).

This mechanism indirects communication between two threads implementing π-calculus
processes via a third party core, and thus incurs an extra latency compared to the simula-
tions of sections 12.3.2 and 12.3.3. However, each new channel can be instantiated over a
different shared mailbox, and the channel management service can thus theoretically spread
the communication load over the entire system. This simulation is intuitively complexity-
preserving for the sequence of actions by individual processes. As with actors above, it
can be made complexity-preserving for communication if a bound is set on the maximum
number of channels, so that the look up process at each mailbox has a bounded maximum
space and time cost.

To summarize, the proposed platform is probably as powerful as Milner’s π-calculus.◻
As with CSP above, our proposed simulation uses only the concurrency control primitives
offered by the TMU without requiring a shared memory system. It is also universal.

12.4 Turing completeness, take two

In [Mil90], Milner considers pure π-calculus, where the only actions that can be performed
by processes are the communication events and operators of the π-calculus itself. The author
then proceeds to demonstrate that the pure π-calculus is equivalent to Church’s λ-calculus,
by simulating two evaluation strategies for λ-terms in the π-calculus (one strict and one
lazy). His simulations implement λ-terms as processes in the π-calculus, and environment
bindings of variables to λ-terms as replicating processes that forward the binding information
to other requesting agents implementing β-reductions. Partial β-reductions further execute
as concurrent processes in the π-calculus, and thus fully take advantage of the inherent
concurrency of the λ-calculus.

With this proof in hand, we can consider a hypothetical implementation of the proposed
architecture where some individual thread contexts are not Turing-complete. For example
we could reduce the implementation so that some thread contexts have access only to a
small amount of local memory, invalidating the techniques from chapter 9. Or we could
consider that some thread contexts can use only a smaller instruction set which does not
support arbitrary recursion depths. In this heterogeneous platform, we would then be able
to distinguish between “fat,” general-purpose thread contexts and “light” thread contexts
with reduced functionality.

In this setting, the simulation techniques presented in section 12.3.4 can still be used to
simulate the π-calculus using “light” contexts. Indeed, the primitives from the section 12.3.4
are implemented in our simulation using only simple synchronizing reads and writes and
sending TMU events. The main simulation logic occurs outside of the simulated π-calculus
processes, in the mailboxes, where larger memory and recursion are required. However, we
can note that only one mailbox per core is necessary; an arbitrary number of “light” thread
contexts can be used around each mailbox without changing the semantics of the simulation.

In such an environment with a few “fat” mailbox thread contexts and many “light”◻
thread contexts, the system would be able to carry out the reduction of arbitrary λ-terms
as per [Mil90], by spreading the evaluation over a dynamically defined, arbitrarily large
network of small communicating processes. In other words, the system as a whole would be

196 CHAPTER 12. ISSUES OF GENERALITY

Turing-complete. Moreover, its expressivity power could expand arbitrarily by increasing
the number of “light” thread contexts, at a fixed “fat” context budget. The system would
also be universal because processes and channels would still be specified by software. The
only drawback of reducing the number of “fat” contexts is that they are a bottleneck for
communication: a smaller number of “fat” contexts implies less available bandwidth overall.

Unfortunately, we were not able to determine yet whether this simulation would be
complexity-preserving, that is whether a bound can be set on the space and time costs to
simulate one execution step of the simulated Turing machine.

12.5 Exposing the generality to software

The arguments above merely suggest that the design is general. There are two ways forward
to convince audiences more thoroughly. The first is to describe the semantics of the hardware
interface from chapter 4 precisely in an abstract model, and then prove formally that this
model is at least as expressive as other existing models. This approach, while necessary
to gain credibility in theoretical circles, would be however largely inefficient in making the
invention accessible. Instead, more popular audiences will require programming languages
and frameworks that expose the system’s potential to their creativity (cf. section 1.3).

So far, our contributions provide a general-purpose programming environment for indi-
vidual cores (the C language), and a handful of concurrency-related features:

• constructs to spread work over multiple thread contexts and cores, with semantics
related to the SVP model described in section 12.3.1;

• a memory consistency model where updates by unrelated concurrent threads may be
visible to each other (namely, if they are part of the same CD, cf. chapter 7);

• the foundations of a finite resource model (chapters 10 and 11).

These features makes our contribution only barely more powerful than the SVP model▷
described in section 12.3.1. In particular, to implement the CSP, Actors and π-calculus
simulations introduced in section 12.3, the language interface must be further extended
with operators to:

• take the address of a synchronizer;
• issue a remote access to a synchronizer whose address is known;
• reserve a thread context (“allocate”) and store its identity;
• create threads in a previously reserved context3;
• synchronize on termination of threads without releasing the context4;
• organize atomicity of access to memory between threads running on a single core.

We estimate that little effort is required to add these primitives to the framework in-
troduced in chapter 6, since these primitives are already available in the hardware interface
from chapter 4. However, we also highlight that any program that would subsequently use
these features would not necessarily be serializable any more, limiting the user’s ability to
troubleshoot programming errors (cf. section 6.2.4). This may warrant the separation of
these additional services in either a separate system language, or a set of privileged language
constructs that would be only usable by the operating software of higher-level parallel lan-
guages, and not directly by application programmers. Alternatively, an emulation of these

3Currently, reservation and creation are bound in a single creation construct.
4Currently, synchronization and release are bound in a single synchronization construct.

12.6. GENERALITY IN OTHER DESIGNS 197

primitives could be implemented on a legacy platform to serve as reference for troubleshoot-
ing. We suggest that this exploration in language design be performed in future work.

12.6 Generality in other designs

Most contemporary SMP chip designs inherit their generality in an almost boringly sim-
ple way. For example, each individual core in Intel’s general-purpose multi-core offerings,
including the P6, NetBurst, Core, Nehalem, Atom, Sandy Bridge micro-architectures, com-
bine traditional general-purpose ISAs with a timer interrupt, coherent views on a common
shared memory and direct access to system I/O; so do AMD’s K8-K10 and Sun’s/Oracle’s
SPARC multi-core products. The timer interrupt in turn allows programmers to define
arbitrarily large numbers of virtual processes interleaved using a software scheduler; the
coherent shared memory enables arbitrarily large numbers of virtual channels connected in
arbitrary patterns. Universality and interactivity on each core are evident, as every behavior
is defined in software and all cores have symmetric access to I/O. We can find more diversity
in other “exotic” designs that have surfaced in the last 10 years.

In IBM’s Cell Broadband Engine [KDH+05], a general-purpose PowerPC core called PPE
is combined with 8 to 16 smaller RISC cores called SPEs. Although each SPE supports a
general instruction set featuring conditional branches, and direct access to the outside world
via its own Direct Memory Access (DMA) controller, it is connected only to a local RAMwith
a capacity of 256KiB which contains both code and data. This capacity may be sufficient to
accommodate the workload of sub-computations driven from the PPE; however it seems to
us insufficient for general-purpose workloads driven directly from the SPE. Meanwhile, each
SPE supports inter-SPE communication via 128 distinct synchronous channels implemented
in hardware. This makes the SPE group a suitable platform for simple process networks
with up to 8-16 processes (the number of SPEs). Although each SPE supports control flow
preemption via external interrupts, this feature could not simply be used by a software
scheduler to virtualize more processes because the channel read and write operations are
not interruptible.

In NVIDIA’s Fermi [LNOM08, NVI09] GPGPU designs, each core, called an SM, is
equipped with a threading engine able to schedule multiple independent threads concur-
rently. Each thread can run arbitrarily patterns of conditional branches and can be config-
ured to access an arbitrarily large private memory via a unified cache to external RAM (a
feature not present in NVIDIA’s previous GPGPU offerings). As such, each thread features
Turing-completeness. However, Fermi threads lack the generality required in section 1.2.1:
they cannot be interactive, because Fermi does not allow GPGPU threads to access external
I/O devices.

In terms of concurrency patterns, Fermi threads do not support control flow preemption
via a timer interrupt and thus cannot multiplex multiple logical processes over one thread
context. However, Fermi does support inter-thread synchronization within one SM using
atomic accesses to a local, 16KiB shared memory. Since each SM can run 768 separate
threads, the chip should thus support CSP and π-calculus up to that number of processes
within each SM, using mechanisms similar to those we propose later in sections 12.3.2
and 12.3.4, with the number of channels limited by the local memory capacity. When con-
sidering the entire chip of multiple SMs instead, communication between SMs is possible via
the external RAM, however memory atomics do not cross SM boundaries so synchroniza-
tion would require busy waiting. To summarize, Fermi’s architecture can support general

198 CHAPTER 12. ISSUES OF GENERALITY

concurrency patterns efficiently within one SM, and less efficiently across all SMs in one
chip.

We also considered Intel’s Single-Chip Cloud Computer (SCC) [MRL+10], a research
platform, and Tilera’s TILE64 [BEA+08], a product offering for network applications. Both
integrate a larger number of general-purpose cores on one chip than contemporary multi-core
product offerings: 48 for the SCC, 64 for TILE64. All cores are connected to a common NoC.
On both chips, Turing-completeness at each core is achieved by a traditional design—the
MIPS pipeline for TILE64, the P54C pipeline for the SCC—and a configurable mapping from
cores to external memory able to provide the illusion of arbitrarily large private memory to
each core. Interactivity is provided on the TILE64 by direct access to external I/O devices
on each core via dedicated I/O links on the NoC; on the SCC, the NoC is connected to
an external service processor implemented on FPGA which forwards I/O requests from the
SCC cores to a host system. The SCC approach to I/O is thus similar to the one we took
in chapter 5.

For parallel execution, TILE64 and SCC only support one hardware thread per core, but
cores feature preemption as the means to multiplex multiple software processes. TILE64
offers comprehensive support for communication: it supports 4 hardware-supported asyn-
chronous channels to any other cores (UDN), a single channel to a configurable, static set of
peers (STN) and two dedicated channels to external I/O devices per core (IDN). Alterna-
tively, cores can also implement virtual channels over a coherent, virtually shared memory
implemented over another set of NoC links (MDN), although the communication latency is
then higher. This diversity of communication means ensures that the design can support
most general parallel programming patterns.

In contrast, the SCC does not offer a coherent view of shared memory to cores. While
each pair of cores has access to a local scratchpad of 256KiB, called Message-Passing Buffer
(MPB), which can be accessed remotely by other cores via the NoC, the MPB does not
synchronize. Instead, point-to-point synchronization can be negotiated only via IPIs, or by
disabling the local caches and busy waiting on changes to external memory regions. As
such, while the SCC theoretically supports most general parallel programming patterns, its
actual implementation yields poor point-to-point communication latencies.

12.6. GENERALITY IN OTHER DESIGNS 199

Summary

When designing new components as building blocks for computing systems, the innovator
should describe the level of semantic generality provided by the invention. Especially when
designing components for general-purpose systems, generality should be argued by relating
the new component to theoretical models whose generality has been previously established.
In most contemporary microprocessor designs, generality is implicitly inherited by reusing
the traditional model of Turing-complete processors implementing timer-driven control flow
preemption and connected to a shared memory that can implement arbitrary point-to-
point communication. These basic conceptual models inherit Turing completeness from the
individual processors and the semantics of most abstract concurrency models developed
since the 1970’s.
In contrast, the proposed CMP design that we covered earlier does not provide preemption.
It supports but does not require a shared memory. Also, it provides a large number of
thread contexts which compete for a single address space. Because of these differences, a
new bridge must be constructed between this design and existing abstract models before it
can be advertised as “general.”
In this chapter, we have acknowledged previous work in this direction by our peers, where◯
a “concurrency model” named SVP was defined. We also showed the limitations of this
approach.
Instead, by constructing simulations using only the platform’s dedicated hardware concur-◻
rency management primitives and private memory on each core (i.e. without requiring a
shared memory system), we were able to relate it to Hoare’s CSP, Hewitt and Agha’s Ac-
tors and Milner’s π-calculus. Furthermore, using our contribution from chapter 9, we were
able to regain Turing-completeness for individual cores under the assumption of arbitrary
large external memory. If this latter assumption does not hold, we are still able to suggest
Turing-completeness for the entire system based on support for the π-calculus. Our simu-▷
lations are based on the machine primitives described in chapter 4. These primitives are
not all yet exposed in the language interface from chapter 6; therefore, future work must
provide further language support before the full generality of the platform becomes available
to external audiences.

Part III

Applications and experiences
—Feedback on the answers to the inner and outer questions

Chapter 13

Core evaluation
—Lessons learned about hardware microthreading

Abstract

Once a platform is defined around an architectural innovation, effort must be in-
vested into engaging with the audience and gaining feedback about the innovation. In
this chapter, we provide an example of this interaction. In our ecosystem, a comprehen-
sive evaluation of the architecture and its implementations was realized. We highlight
some key results from this evaluation, for two purposes besides the evaluation results
themselves. One purpose is to document how the platform definition from part II is
practically related to the actual evaluation work, i.e. what interactions actually took
place. The other is to illustrate that the interaction with our audience has enabled
early feedback on the architecture design, as suggested in section 5.3.

Contents
13.1 Introduction . 204
13.2 Evaluation efforts from the ecosystem . 204
13.3 Separate impact of multi-threading and load balancing 210
13.4 Applicability to irregular functional concurrency . 213
13.5 Optimization of performance per watt . 215
13.6 Applicability to throughput-oriented applications . 217
13.7 Issues of system bandwidths, design trade-offs . 218
13.8 Relevance of thread-to-thread sharings . 220
Summary . 221

203

204 CHAPTER 13. CORE EVALUATION

13.1 Introduction

As we explained in section 5.4.2, we worked in an ecosystem specifically set up to evaluate
the innovation from part I. We faced three direct audiences: a research partner organization
in charge of demonstrating the benefits of SAC [GS06] to program the proposed architecture,
a partner organization in charge of discovering fine-grained concurrency in plain C loops,
and various individuals in charge of hand-writing benchmarks using C and our proposed
language extensions. In section 13.2 below, we explain through a running example the
methodology used by our audience to carry out the platform evaluation. We also explain
how our contributions from part II were useful in this context.

While we participated in these activities merely as support staff, we gained insight into
the architecture. As this insight has not yet been published elsewhere, we share it in the
remainder of this chapter. In particular:

• in section 13.3, we explain how we can separate the impact of multithreading from the
impact of multi-core execution to understand performance results;

• in section 13.4, we identify dynamically heterogeneous, functional concurrency and
introduce an architectural feature that we co-designed to optimize this use case;

• in section 13.5, we illustrate issues of power usage;
• in section 13.6, we illustrate throughput-oriented workloads;
• in section 13.7, we identify high-level issues shared by other multi-core designs;
• in section 13.8, we identify that a hallmark feature of the proposed design, the sharing
of synchronizers by adjacent thread contexts, is actually of limited use and could be
advantageously removed in favor of other, simpler features.

13.2 Evaluation efforts from the ecosystem

The benchmarking activities were organized around a single common theme: produce speedup
diagrams that demonstrate the scalability of a single code representation across different
hardware configurations. To achieve this, all the benchmarks have been written to share a
common pattern:

1. load input data in memory;
2. sample performance counters;
3. execute a workload;
4. sample performance counters, and report the differences;
5. optionally, execute steps 2 to 4 multiple times.

Each program is then:

1. compiled once using our tools from chapters 6 and 8,
2. run multiple times on our platform from chapter 5, by placing it at start-up on core

clusters of different sizes (from 1 to 64 cores) using the primitives from chapter 11.

Most programs further required the features detailed in chapters 9 and 10. The outcome
for each benchmark is a series of samples which report the time to completion, the num-
ber of instructions executed, and other variables relevant to the evaluation of a processor
architecture.

In addition to the features from part II, we implemented the following additional oper-◻
ating software for the benchmarking activities:

13.2. EVALUATION EFFORTS FROM THE ECOSYSTEM 205

Side note 13.1: About the relevance of the Livermore loops.
We acknowledge that the Livermore kernels are extremely small kernels unrepresentative of contemporary
large applications. They were designed to be representative of loops in large high-performance applications
and were selected/designed to test how effective vectorising compilers were at recognising concurrency in
these applications. This benchmark suite is nowadays mostly superseded by newer developments that also
test workloads from outside the HPC community, e.g. the more diversified Standard Performance Evaluation
Corporation (SPEC) and NASA Advanced Supercomputing (NAS) benchmark suites. We discuss this further
in chapter 15.

1 COMMON /SPACE1/ U(1001) , X(1001) , Y(1001) , Z(1001)
2 COMMON /SPACER/ Q, R, T
3 . . .
4 cd i r $ ivdep
5 1007 DO 7 k= 1 ,n
6 X(k)= U(k) + R∗(Z(k) + R∗Y(k)) +
7 1 T∗(U(k+3) + R∗(U(k+2) + R∗U(k+1)) +
8 2 T∗(U(k+6) + Q∗(U(k+5) + Q∗U(k+4))))
9 7 CONTINUE

Listing 13.1: FORTRAN code for the Livermore loop 7.

• a resource management service that reserves a cluster of cores upon system start-up
and starts the benchmark program’s main function on this cluster;

• a performance counter sampling framework providing a uniform API to programs
across all target implementations;

• a custom data input API able to load large arrays of data from files.

Beyond measuring performance over multiple core cluster sizes, each benchmark was
also used to experiment with different compiler optimization flags, both at the higher-level
SAC or parallelizing C compiler, and the SL tool chain. Each benchmark was also used
to experiment with different architecture parameters, e.g. number of cores, cache sizes, etc.
These benchmarking activities were spread over the ecosystem; an exhaustive report of
all the benchmark results would be outside of our scope. Instead, we focus below on one
benchmark to illustrate how the work was carried out in our technical framework.

13.2.1 Running example: Livermore loops

The Livermore FORTRAN kernels [McM86] are a sequence of 24 algorithms taken from
scientific code. Their reference implementation is a FORTRAN program that exercises all
24 algorithms multiple times and computes a statistical report of their performance.

13.2.2 Implementation

Each of the 24 kernels was extracted individually from the FORTRAN implementation. One
partner rewrote the kernels using SAC; separately, using a translation of the FORTRAN
code to C as a basis, one partner used their parallelizing C compiler to automatically discover
concurrency in the sequential C code and replace loops by uses of our language extensions,
whereas we did the same work manually. We depict this implementation work in fig. 13.1.

206 CHAPTER 13. CORE EVALUATION

C program
containing

loop
livermore.f

livermore
loop

(FORTRAN)

SAC
program

using
algorithm

parallelizing
C compiler

SL
program
(containing

family
creations)

SL
program
(containing

family
creations)

SL
program
(containing

family
creations)

SAC2C
+ SL engine

SL tool
chain

Binary
image

SL tool
chain

Binary
image

SL tool
chain

Binary
image

SL system
+ library

codeSAC
library
code

m
an

ua
l e

xtr
ac

tio
n

m
an

ua
l tr

an
sla

tio
n

manual
parallellization

E
V
A
L
U
A
T
I
O
N

SL code for
SAC library

SAC2C
+ SL engine

(YOU ARE HERE)
SYSTEM INTERFACE

Figure 13.1: Implementing the Livermore loop benchmarks using our proposed framework.

1 double u [1 0 0 1] , x [1 0 0 1] , y [1 0 0 1] , z [1 0 0 1] ;
2 double q , r , t ;
3 . . .
4 for (k=0 ; k<n ; k++) {
5 x [k] = u [k] + r ∗(z [k] + r ∗y [k]) +
6 t ∗(u [k+3] + r ∗(u [k+2] + r ∗u [k+1]) +
7 t ∗(u [k+6] + q∗(u [k+5] + q∗u [k+4]))) ;
8 }

Listing 13.2: Sequential C code for the Livermore loop 7.

1 special ize
2 double [+] Loop7 (int n , double q , double r ,
3 double t , double [1 0 0 1] u , double [1 0 0 1] y ,
4 double [1 0 0 1] z) ;
5 double [+] Loop7 (int n , double q , double r ,
6 double t , double [+] u , double [+] y ,
7 double [+] z)
8 {
9 a = u + r ∗ (z + r ∗ y)
10 + t ∗(sh i f t ([−3] , u) + r ∗(sh i f t ([−2] , u) + r ∗ sh i f t ([−1] , u))
11 + t ∗(sh i f t ([−6] , u) + q∗(sh i f t ([−5] , u) + q∗ sh i f t ([−4] , u)))) ;
12 return (take ([n] , a) , i n t e r) ;
13 }
14 . . .
15 x = Loop7 (n , q , r , t , u , y , z) ;

Listing 13.3: SAC code for the Livermore loop 7.

13.2. EVALUATION EFFORTS FROM THE ECOSYSTEM 207

1 sl_def (innerk7 , , sl_glparm (double∗ , x) ,
2 sl_glparm (double∗ , u) , sl_glparm (double∗ , z) ,
3 sl_glparm (double∗ , y) , sl_glfparm (double , r) ,
4 sl_glfparm (double , t) , sl_glfparm (double , q))
5 {
6 sl_index (k) ;
7 double ∗x = sl_getp (x) , ∗u = sl_getp (u) ,
8 ∗z = sl_getp (z) , ∗y = sl_getp (y) ,
9 r = sl_getp (r) , t = sl_getp (t) , q = sl_getp (q) ;
10

11 x [k] = u [k] + r ∗(z [k] + r ∗y [k]) +
12 t ∗(u [k+3] + r ∗(u [k+2] + r ∗u [k+1]) +
13 t ∗(u [k+6] + q∗(u [k+5] + q∗u [k+4]))) ;
14 }
15 sl_enddef
16 . . .
17 double U[1 0 0 1] , X[1 0 0 1] , Y[1 0 0 1] , Z [1 0 0 1] ;
18 double Q, R, T;
19 . . .
20 sl_create (, , , n , , , , innerk7 ,
21 sl_glarg (double ∗ , , X) , sl_glarg (double ∗ , , U) ,
22 sl_glarg (double ∗ , , Z) , sl_glarg (double ∗ , , Y) ,
23 sl_glfarg (double , , R) , sl_glfarg (double , T) ,
24 sl_glfarg (double , , Q)) ;
25 sl_sync () ;

Listing 13.4: Concurrent SL code for the Livermore loop 7.

To illustrate further, we focus on one particular kernel, the equation of state fragment,
whose original FORTRAN code is given in listing 13.1. This was separately translated to
an equivalent C loop (listing 13.2) and parallel SAC code (listing 13.3); we then manually
encapsulated the C loop body in a thread program and to produce the concurrent SL version
in listing 13.4. Compared to the C code, we explicitly lift the reference to the globally
declared variables as thread program channels in our SL code to avoid an external symbol
reference in every thread, because our implementation strategy prevents the underlying
C compiler from automatically detecting common sub-expressions across thread functions.
Otherwise, no difficulty is introduced: the sequential loop of n iterations is replaced by a
family creation of n logical threads. Another Livermore loop example using semi-explicit
work placement to perform parallel reductions was also provided in chapter 11.

13.2.3 Results

Some example results for this benchmark are illustrated in figs. 13.2 to 13.4. Both the cycle-
accurate, many-core, microthreaded platform emulation and a legacy architecture were used
for comparison. The system characteristics of the legacy platform and the microthreaded
platform for the results of this chapter are listed in table 13.1.

The code was compiled once (fig. 13.1) using version 3.6b of the SL tool chain, relying
on GCC version 4.5 as an underlying code generator for the microthreaded architecture and
GCC 4.2.1 to compile the sequential C code to the legacy architecture. The default compiler
settings were used for optimization (“-O2”).

208 CHAPTER 13. CORE EVALUATION

� 	
 � �� 	 �

�

�����

	����

����

����

�����

�����

�����

��������

�������������

���

��������� ����

��!"��#������
����������
$��#%���

&"������%�������"���

&
�
�
�
�
�
�
�
�
�
�

Figure 13.2: Time to result (performance) for the Livermore loop 7.

Problem size and baseline are described in section 13.2.3.

� �� 	� �
� �� �� ��

�

�

��

��

	�

	�

�������� �������������

��� ��������� ����

��!"��#����������������$��#%���

&"������%�������"���

'�
�

Figure 13.3: Instructions per cycle (utilization) for the Livermore loop 7.

Problem size and baseline are described in section 13.2.3.

For this benchmark, the input n = 990 was used as per the original Livermore benchmark
specification. We used two baselines for comparison: the first is the behavior of the sequential
C code on the legacy system, and the second is a hand-written, hand-tuned raw assembly
program for the microthreaded platform written by an architecture expert.

There are different types of observations to draw from these results, depending on the
audience.

13.2.3.1 Observations from the architect’s perspective

The results have illustrated that this specific implementation is able to scale performance
for small workloads, e.g. 990 microthreads in the results above (each performing one iter-
ation of the original loop) over multiple cores, up to dozens of cores, e.g. 32 cores above.
This is remarkable as such small workloads (less than 105 instructions) would not be able
to compensate concurrency management overheads (106 instructions or more) on a legacy

13.2. EVALUATION EFFORTS FROM THE ECOSYSTEM 209

� �� 	� �
� �� �� ��

�

	

�

�

��

�	

�������� �������������

��� ��������� ����

��!"��#����������������$��#%���

&"������%�������"���

(
)
�
*
�
�+
��

Figure 13.4: Floating-point performance for the Livermore loop 7.

Problem size and baseline are described in section 13.2.3.

Legacy platform Microthreaded platform
System MacBookPro7,1 MGSim v3
Processor chip Intel Core 2 Duo P8600 Many-core MT chip
Core
micro-architecture

Intel Penryn In-order 6-stage RISC
pipeline + microthreading

Issue width 4 1
ISA x86-64 DEC/Alpha (64-bit)

+ MT extensions
Core frequency 2.4GHz 1GHz
Number of cores 2 128
FPUs 2 64
Hw. threads 2 32640
Hw. threads / core 1 255
L1 cache (total) 128K 768K
L2 cache (total) 3MB 4MB
L1 cache / core 64K 6K
Memory interface 1x DDR3-1066 4x DDR3-1600†

RAM in system 4GB 4GB
Chip technology 45nm 45nm (est.)
Chip area 107mm2 120mm2 (est.)
† The implementation for the DDR3 interface was incomplete, see section 13.7.1 for
details.

Table 13.1: System characteristics.

210 CHAPTER 13. CORE EVALUATION

architecture. This result, repeated over most other benchmarks, confirms that the low-
overhead hardware support for concurrency management in the proposed design is able to
exploit more software concurrency than traditional software-based approaches.

For larger numbers of cores, the performance then saturates. Various effects cause this
limitation, including memory access latencies, overhead of communicating concurrency man-
agement events over a larger number of cores, memory bandwidth, load imbalance. Again,
a full analysis of the performance characteristics are outside of the scope of our dissertation.

Nevertheless, we were particularly excited to find that the performance of the 1-core
legacy baseline was matched in multiple benchmarks by less than 32 microthreaded cores,
e.g. 8 cores in the running example above. Considering the technology details from table 13.1,
this corresponds to a smaller area on chip than 1 core of the selected legacy platform, which
was close to the state of the art at the time of this writing. In other words, for this specific
benchmark the performance per unit of area is higher with the new architecture. Combined
with the observation that the proposed design does not use speculation in any way, contrary
to the legacy design, these results suggest that the performance per watt is also higher.

13.2.3.2 Observations from the software engineer’s perspective

The naive rewrite of the sequential C loops (e.g. listing 13.2) as a thread family (e.g. list-
ing 13.4) is sufficient to obtain, after compilation through our tool chain, performance figures
close to the hand-optimized assembly code (e.g. more than 85% in the example). The over-
head of using SL comes mainly from the absence of global common sub-expression elimitation
(across thread programs), which forces array base address to be recomputed in every logical
thread. In other words, despite our simple and coarse approach to compilation in chapter 6,
we could successfully rely on the interface language to expose the performance opportunities
of the new architecture.

The preliminary results as to the applicability of the new design to existing software
code bases are also encouraging. Indeed, the benchmarks show that code automatically
parallelised from C using the partner technology, reported on in [SEM09, SM11] can attain
both a higher performance than the legacy baseline within the same chip area budget, and
also multi-core performance scalability, cf. e.g. fig. 13.2.

13.3 Separate impact of multi-threading and load balancing

The evaluation activities have revealed that the key parameters to optimize execution effi-
ciency are multi-threaded execution per core and techniques to optimize load balance across
cores, and these are mostly orthogonal.

To illustrate this, we use an example program which exposes a heterogeneous workload.
The workload is defined by a bulk creation of 40000 logical threads where the amount of
work per thread varies irregularly, as illustrated in fig. 13.5.

We show the performance of this workload in the same environment as section 13.2
(table 13.1) in fig. 13.6. We used two implementations that differ in how the logical threads
are distributed across cores:

• in the “even” implementation, the logical range is divided into P equal segments where
P is the number of cores in the cluster, i.e. core p runs indices {startp, startp+1, startp+
2 . . .}. This is the straightforward use of the hardware bulk creation process, by re-
questing a single bulk creation over all cores in the cluster;

13.3. SEPARATE IMPACT OF MULTI-THREADING AND LOAD BALANCING 211

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000 30000 35000 40000

nu
m

be
r o

f i
ns

tru
ct

io
ns

logical thread index

Insns.
per
thread

Number of
logical
threads

Instructions
accounted

0–83 35524
(88.81%)

1141009 (31.45%)

84–167 1314 (3.29%) 145456 (4.01%)
168–251 332 (0.83%) 65760 (1.81%)
252–335 120 (0.30%) 34824 (0.96%)
336–419 64 (0.16%) 23518 (0.65%)
420–503 36 (0.09%) 16448 (0.45%)
504–587 32 (0.08%) 17596 (0.49%)
588–671 16 (0.04%) 9968 (0.27%)
672–755 14 (0.04%) 10126 (0.28%)
756–839 14 (0.04%) 11504 (0.32%)
840–923 2534 (6.33%) 2151336 (59.31%)
(40000 logical threads, 3627545 instructions total)

Figure 13.5: Actual thread sizes in the example heterogeneous workload.

Side note 13.2: Description of the example heterogeneous workload.
Each logical thread l in the range [0,40000] evaluates the function m(l) defined by

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

m(l) = f(xstart + xstep × (l mod N) + i (ystart + ystep × ⌊l/N⌋))

f(c) =min ({k ∣ 2 ≤ ∣zk ∣} ∪ {64}) with z0 = c and zn+1 = z2n + c
xstep = (xend − xstart)/N
ystep = (yend − ystart)/M

where (xstart, xend, ystart, yend) are input parameters that define a window over the complex plane, and
(N,M) are input parameters that define the discretization of this window. We use:

• N =M = 200, hence N ×M = 40000 logical threads;
• xstart = ystart = −2, xend = yend = 3.

The function f computes which iteration of the complex quadratic polynomial zn+1 = z2n +c first escapes the
closed disk of radius 2 around the origin, with a maximum of 64 iterations. This is the function typically
used to visualize the boundary of the Mandelbrot set [PR86]. We provide the corresponding source code in
Appendix K.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 10 20 30 40 50 60 70

tim
e

to
 re

su
lt

(s
ec

on
ds

)

number of cores used

baseline
1 th/core, even
2 th/core, even
4 th/core, even
8 th/core, even

16 th/core, even
max th/core, even

1 th/core, r.-r.
2 th/core, r.-r.
4 th/core, r.-r.
8 th/core, r.-r.

16 th/core, r.-r.
max th/core, r.-r.

(a) Time to result.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

in
st

ru
ct

io
ns

 p
er

 c
yc

le

number of cores used

1 th/core, even
2 th/core, even
4 th/core, even
8 th/core, even

16 th/core, even
max th/core, even

1 th/core, r.-r.
2 th/core, r.-r.
4 th/core, r.-r.
8 th/core, r.-r.

16 th/core, r.-r.
max th/core, r.-r.

(b) Instructions per cycle.

Figure 13.6: Performance of the example heterogeneous workload.

212 CHAPTER 13. CORE EVALUATION

 0 200 400 600 800 1000 1200 1400 1600 1800

time (microseconds)

 0

 5

 10

 15

 20

 25

 30

co
re

 in
de

x
in

 c
lu

st
er

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) Even distribution, 1 thread/core.

 0 50 100 150 200 250 300 350 400 450

time (microseconds)

 0

 5

 10

 15

 20

 25

 30

co
re

 in
de

x
in

 c
lu

st
er

 0

 0.2

 0.4

 0.6

 0.8

 1

(b) Even distribution, 16 threads/core.

 0 50 100 150 200 250 300 350 400 450 500

time (microseconds)

 0

 5

 10

 15

 20

 25

 30

co
re

 in
de

x
in

 c
lu

st
er

 0

 0.2

 0.4

 0.6

 0.8

 1

(c) Round-robin distribution, 1 thread/core.

 0 20 40 60 80 100 120 140 160

time (microseconds)

 0

 5

 10

 15

 20

 25

 30

co
re

 in
de

x
in

 c
lu

st
er

 0

 0.2

 0.4

 0.6

 0.8

 1

(d) Round-robin distribution, 16 threads/core.

Figure 13.7: Per-core activity for the example heterogeneous workload running on 32 cores.

• in the “round-robin” implementation, the logical range is distributed in a round-robin
fashion over the P cores in the cluster, i.e. core p runs indexes {p, p + P, p + 2P . . .}.
This triggers bulk creation separately with different logical index ranges on every core
of the cluster.

As can be observed in fig. 13.6, the performance of the proposed platform exceeds the
reference baseline consistently past 32 cores, and for some parameters beyond 2 cores. This
is compatible with the observations from section 13.2.3.1.

Furthermore, fig. 13.6 reveals that the round-robin distribution is radically beneficial
to performance. The reason why this is so is exposed more clearly in fig. 13.7: with the
even index distribution, the heterogeneity of the workload causes imbalance between cores,
whereas the round-robin distribution exploits the local homogeneity of the computational
problem to spread the workload more evenly across cores.

This example illustrates the following:

• per-core multithreading is effective at increasing per-core utilization, i.e. instructions
per cycle on each core, regardless of load distribution. This can be observed in fig. 13.7b
relative to fig. 13.7a and fig. 13.7d relative to fig. 13.7c. While this is a well-known
effect for I/O- or memory-bound workloads, this benchmark confirms that fine-grained
multithreading is also effective at tolerating latencies of FPU operations, which are
handled asynchronously in the proposed architecture.

• the default logical index distribution performed by the hardware bulk creation process,
primarily designed for the deployment of regular data-parallelism across cores, i.e. as

13.4. APPLICABILITY TO IRREGULAR FUNCTIONAL CONCURRENCY 213

Side note 13.3: Choice of QuickSort for evaluation.
QuickSort was chosen as an instance of general, unstructured divide-and-conquer algorithm, to evaluate
load balancing when no application-specific knowledge is known. In particular no consideration was given
as to whether it was the fastest algorithm to sort arrays of integers. We acknowledge that for this specific
application, using instead an algorithm based on sorting networks [Bat68],[Knu98, pp. 219–247],[PF05,
Part 6] would make most efficient use the parallelism available on the target architecture.

a general-purpose substitute of specialized SIMD units, cannot be naively applied to
heterogeneous workloads to maximize performance. For example, figs. 13.6 and 13.7
reveal that the even distribution yields 3× to 4× higher execution times than the
round-robin distribution for this workload.

• Nevertheless, even with load imbalance and sub-optimal performance, the higher per-
formance density of the proposed design may allow a naive implementation to exceed
the performance of a legacy design in the same area budget, as demonstrated in fig. 13.6
from 8 cores.

• As shown in this example, maximum performance can be approximated with a round-
robin distribution when the workload is known to be locally homogeneous despite the
overall heterogeneity. This application-specific decomposition domain transposition is
further facilitated by the full configurability of the (start, limit, step) parameters to
the hardware creation process.

This latter observation suggests capturing the distribution of globally heterogeneous,▷
but locally homogeneous workloads in a programming language construct at some level of
abstraction. The exploitation of this opportunity in higher-level programming languages
should thus constitute future work.

The next section explores cases where the application domain does not provides good
static decompositions.

13.4 Applicability to irregular functional concurrency

There is limited support in the platform to resolve load imbalance in functionally concurrent
programs where the amount of work per sub-problem is dependent on the input. An example
was provided by the evaluation of QuickSort using SAC on the proposed platform (cf. side
note 13.3). QuickSort uses divide-and-conquer concurrency where the depth of any sub-tree,
and thus the complexity of any spatial sub-part of the concurrent workload, is dependent
on the values to sort. The design from part I does not provide any hardware support for
dynamic load balancing; instead, the QuickSort evaluation carried out by our audience used
different explicit placement strategies using our proposed operators from table 11.1.

An example performance graph is given in fig. 13.8; it reports the time to sort 1024
integers using three implementations: one using the current core and the next in the cluster
at each divide step (fig. 13.9a); another using the previous and next cores (fig. 13.9b); the
last using the upper and lower half of the current cluster at each divide step (fig. 13.9c).
Although fig. 13.8 shows relatively good scalability of the last implementation up to 16 cores,
the work distribution is still strongly imbalanced, as shown in fig. 13.9d.

In an attempt to minimize such dynamic load imbalances, we jointly co-designed an∎
extension to the hardware bulk creation context with our audience, where the “allocate”
message sent to a cluster (cf. section 3.4.2) would travel two times through all cores, one
time to select the least used core and the second to actually reserve the thread context.

214 CHAPTER 13. CORE EVALUATION

Figure 13.8: QuickSort performance on the proposed platform.

Figure reproduced with permission from [SHJ11].

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

(a) Current/next distribu-
tion.

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

(b) Previous/next distribu-
tion.

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

(c) Lower half/Upper half
distribution.

� � ��
� �� �� �� �� �	 �
 �� �� �� �� �� �� �� 	� 		 	
 �� ��

�

���

���

���

���

	��

(d) Lower half/Upper half distribution on 64 cores.

The y-axis (vertical) represents the
number of logical threads per core. The
x-axis represents the code index in the
cluster. The z-axis (depth) represents
unfolding steps, i.e. time during execu-
tion.

Figure 13.9: Different logical thread distributions for QuickSort.

Figures reproduced with permission from [SHJ11].

13.5. OPTIMIZATION OF PERFORMANCE PER WATT 215

Figure 13.10: QuickSort performance using automatic load balancing.

Figure reproduced with permission from [SHJ11].

We considered that the higher latency of a two-pass transaction would still be relatively
small compared to a software-based load balancing scheme, and would be compensated by
a lower load imbalance. To enable the use of this feature in software we introduced the
optional keyword “sl__strategy(balanced)” as a specifier for the constructs sl_create
(Appendix I.5.8.1) and sl_spawn (section 6.3.5).

Analytically, this automatic load balancing feature is only beneficial to performance when
the rate of new delegations over the entire local cluster is lower than the bandwidth of
the delegation network for the cluster. Otherwise, contention occurs on the delegation
network: the latency of each request increases and may not be compensated any more. The
applicability of this feature can thus only be increased either by using a coarser concurrency
granularity, or increasing the delegation bandwidth.

This feature was thus combined with concurrency throttling in the QuickSort example:
the code was modified to use load balancing, and to perform sorting sequentially for sub-
lists of less than 10 elements. As fig. 13.10 shows, this combination indeed enables improved
performance up to 8 cores (cf. fig. 13.8 for comparison). In this benchmark, beyond 8 cores
the increased latency is still not properly compensated by the workload on each core. It is
possible to increase this threshold at the cost of more load imbalance.

13.5 Optimization of performance per watt

Another aspect illustrated by fig. 13.6 is the spectrum of possible parameter choices when
selecting an implementation to meet a performance constraint: one can either tweak the
number of thread contexts per core, the number of cores actually used or the load distribution
of logical threads across cores.

When performance constraints are expressed as real-time deadlines, e.g. “this computa-
tion must complete in less than 1ms,” there may still exist multiple parameters that satisfy
the constraint. With the example from fig. 13.6, this specific deadline can be met using e.g. 4
cores with round-robin distribution and 16 threads contexts used per core, or 64 cores with
even distribution and 1 thread context per core. We illustrate this diversity in fig. 13.11.

Although intuitively, a selection should favor a smaller number of cores to minimize
energy usage, i.e. the parameters of figs. 13.11b to 13.11d over those of fig. 13.11a, the
optimal decision strategy may not always be to choose the highest performance per unit
of area. For instance, the best choice may depend on the availability of frequency scaling.

216 CHAPTER 13. CORE EVALUATION

 0 100 200 300 400 500 600 700 800 900 1000

time (microseconds)

 0

 10

 20

 30

 40

 50

 60

co
re

 in
de

x
in

 c
lu

st
er

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) Even distribution, 1 thread/core, 64 cores.

 0 100 200 300 400 500 600 700 800 900

time (microseconds)

 0
 2
 4
 6
 8

 10
 12
 14
 16

co
re

 in
de

x
in

 c
lu

st
er

 0

 0.2

 0.4

 0.6

 0.8

 1

(b) Even distribution, 16 threads/core, 16 cores.

 0 50 100 150 200 250 300

time (microseconds)

 0
 2
 4
 6
 8

 10
 12
 14
 16

co
re

 in
de

x
in

 c
lu

st
er

 0

 0.2

 0.4

 0.6

 0.8

 1

(c) Round-robin distribution, 16 thread/core, 16
cores.

 0 100 200 300 400 500 600 700 800 900 1000

time (microseconds)

 0

 1

 2

 3

 4

co
re

 in
de

x
in

 c
lu

st
er

 0

 0.2

 0.4

 0.6

 0.8

 1

(d) Round-robin distribution, 16 threads/core, 4
cores.

Figure 13.11: Per-core activity for the example heterogeneous workload with a 1ms deadline.

Without frequency scaling, parameters that perform with an overall load imbalance may be
beneficial as they would allow the system to gate the clock of and power off cores that become
unused over time. This would favor choosing e.g. the parameters of fig. 13.11b over those of
fig. 13.11c. In contrast, if frequency scaling is available, the configuration of fig. 13.11c can
be run at a third of the clock frequency and both configurations of figs. 13.11b to 13.11d
may have a similar energy cost. The selection can then be guided by other considerations
such as heat dissipation, which would then favor the configuration of fig. 13.11c which better
spreads the load than those of figs. 13.11b and 13.11d.

These considerations support our earlier remarks from section 11.3.2: we still lack a▷
performance model which accounts for both configurable core cluster sizes and energy usage
by computations. For this reason, a simple on-line resource manager that dynamically
places computations based on resource availability and application demands still eludes us—
despite, and perhaps regardless of, the availability of hardware primitives for concurrency
management.

To summarize, the evaluation confirms that hardware microthreading as an architecture
design direction can increase computing density (instructions executed per unit of time
and unit of area), including for heterogeneous concurrency, but it does not fundamentally
change the problem of making high-level scheduling decisions. If anything, it makes it
computationally harder due to the larger amount of concurrency being managed.

13.6. APPLICABILITY TO THROUGHPUT-ORIENTED APPLICATIONS 217

��� ��� ��� ��� 	
����� ���� ��� ���� ��� �����

�

��

���

����

������� ������� ������� �������� ��!" �������� ��#

#�
��
$�

�%
$&
'(�

)�&
�*�

+

Figure 13.12: Throughput for one stream on one core.

������ ������� 	������
������ ��������
�

����

����

���

	���

����

����
���

�
�
��

�
	
�

�
��
�

�

�
�

������ ������� 	������
������ ��������
�

���

����

����

����
���

�
�
��

�
	
�

�
��
�

�

�
�

������ ������� 	������
������ ��������
�

���

	��

���

��

����

����

�	��
����

�
�
��

�
	
�

�
��
�

�

�
�

������ ������� 	������
������ ��������
�

���

	��

���

��

����

����

�	��

����
���

�
�
��

�
	
�

�
��
�

�

�
�

������ ������� 	������
������ ��������
�

���

	��

���

��

����

����

�	��

����
���

�
�
��

�
	
�

�
��
�

�

�
�

������ ������� 	������
������ ��������
�

����

����

���

	���

����

����
�����

�
�
��

�
	
�

�
��
�

�

�
�

Figure 13.13: Combined throughput for 1-8,16 streams per core on 1-16 cores.

The figure shows 1-256 streams. The IXP2800 performance is shown in the leftmost 3 bars at each
core group.

������ ������� 	������
������ ��������
��

��

��
���

�
�
�
�
�
	

��
�
�
�
��
�
�

������ ������� 	������
������ ��������
�

��

��

��
���

�
�
�
�
�
	

��
�
�
�
��
�
�

������ ������� 	������
������ ��������
��

��

��
����

�
�
�
�
�
	

��
�
�
�
��
�
�

������ ������� 	������
������ ��������
��

��

��
���

�
�
�
�
�
	

��
�
�
�
��
�
�

������ ������� 	������
������ ��������
�

��

��

��
���

�
�
�
�
�
	

��
�
�
�
��
�
�

������ ������� 	������
������ ��������
��

��

��
���	�

�
�
�
�
�
	

��
�
�
�
��
�
�

Figure 13.14: Pipeline under-utilization for fig. 13.13.

13.6 Applicability to throughput-oriented applications

The authors of [TLYL04, YLT05] have introduced NPCryptBench, a benchmark suite to
evaluate network processors. We have run unoptimized code for these ciphers and hash
algorithms on our reference platform. First the throughput of the unoptimized code for one
flow on one microthreaded core is compared against the unoptimized throughput for one
flow on one core of the Intel IXP chips ([TLYL04, fig. 4], [YLT05, fig. 3]). Two codes are
used on our platform, one purely sequential and one where the inner loop is parallelised.
Both are implemented using only our proposed interfaces from chapters 6 and 11. As the

218 CHAPTER 13. CORE EVALUATION

results in fig. 13.12 show, the microthreaded hardware provides a throughput advantage
for the more complex AES, SEAL and Blowfish ciphers, whereas the dedicated hardware
hash units of the IXP accelerate MD5 and SHA-1. For the other kernels, the microthreaded
hardware is slower: with RC5, RC6 and IDEA, a carried dependency serializes execution
and minimizes latency tolerance. With RC4, the modified state at each cipher block must
be made consistent in memory before the next thread can proceed, which also partly se-
quentializes execution. Further throughput deviation from the IXP should be considered in
light of the frequency difference (1.4GHz for the IXP vs. 1GHz for our platform) and the
fact the microthreaded hardware was not designed specifically towards cryptography.

Figure 13.13 shows the scalability of the most popular cryptographic kernels, using the
purely sequential, unoptimized code for each stream on our platform and the Level-2 opti-
mized code for the IXP2800 ([TLYL04, fig. 6], [YLT05, fig. 8]). For each sub-cluster size,
increasing the number of flows per core increases utilization (fig. 13.14) and thus overall
throughput. Throughput is furthermore reliably scalable up to 16 cores. With RC4 and
64 flows on 16 cores the workload reaches the memory bandwidth of the chip; with ad-
ditional flows, contention on the internal memory network appears, and the utilization is
reduced slightly as well as the throughput. The throughput then stabilizes at 96 flows
around 1.6Gbps.

13.7 Issues of system bandwidths, design trade-offs

13.7.1 External bandwidth to memory

According to the Amdahl/Case rule of thumb on balanced designs, cited and updated
in [GS00], a platform should provision 1 bit per second of external bandwidth for each
potential instruction per second. With cores clocked at 1GHz this would imply 1Gbit/s per
core. At first sight, this seems matched in the proposed configuration: the internal cache
network supports 64-byte transfers at 1GHz, totalling 512Gbits/s internal bandwidth, and
uses 4 DDR3-1600 external channels totalling 409Gbits/s external bandwidth, well above
the 128Gbits/s implied by the rule of thumb.

Yet while carrying out evaluation activities with our community we did observe exper-
imentally that computation kernels running on 1 to 64 cores, i.e. before fully utilizing the
128 cores available, can saturate the memory bandwidth. We reported on this in [BGH+11].
Further analysis with our peers in charge of the hardware design has revealed the following
limiting factors:

• a programming error in the simulation infrastructure: although the DDR interface
specification supports pipelining, this feature was not used in the cycle-accurate plat-
form simulation used for evaluation. Instead, this implementation supported only one
outstanding request to external memory. The maximum bandwidth for consecutive
reads was thus determined by DDR’s read latency (tCL), and not the issue delay
(tCCD), yielding a maximum of 34Gbit/s per DDR channel in the reference configu-
ration instead of the expected 102.25Gbit/s;

• even if full pipelining was available,multi-thread interference in Dynamic RAM (DRAM)
accesses would still limit bandwidth. This is inherent to the low-level access protocol
to DRAM banks: the time to load a row of cells into the row buffer is higher than
the time to access different cells within the row buffer. While successive accesses by
a single thread can be expected to target addresses within the same row, accesses by

13.7. ISSUES OF SYSTEM BANDWIDTHS, DESIGN TRADE-OFFS 219

multiple threads are interleaved on the channel and may require in the worst case to
switch DRAM rows at each memory operation. This would incur DDR’s row precharge
(tRP), activate (tRCD) and minimum open-close latencies (tRAS) at every access, and
thus limit the bandwidth for DDR3-1600 channels to 10.5GBit/s per channel.

This last issue is the most severe and has affected all the memory-bound results reported
in this chapter and previous academic publications up to 2012. Under high load by het-
erogeneous multithreaded workloads, the visible bandwidth of 4 DDR3-1600 channels may
degrade to 42Gbit/s, well below the 128Gbit/s recommended for a balanced design. To
overcome this issue, the system designer may consider that the DRAM access delays only
constrain accesses to a single bank. Additional bandwidth can thus be obtained by increasing
memory-level parallelism, i.e. the number of visible banks, and expose the address-to-bank
mapping to operating software so that it can map different activities to different banks.

This solution was identified in [JYS+12]. However, the authors of this paper explain that
increasing memory-level parallelism has a non-trivial cost. With the advent of narrow point-
to-point memory interconnects such as FB-DIMM [HV05, GJWJ07] and Intel’s QuickPath
Interconnect [Cor09, ZBMS10], it becomes possible to overcome the traditional package
pin count limitation and increase the number of separate memory channels; however this
comes at the cost of extra latencies and power consumption. Alternatively, one may want to
increase the number of independent banks per DRAM module, however the authors estimate
that market effects will prevent this opportunity and mandate increasing core count to bank
count ratios in future systems. Instead, the authors suggest to use DRAM sub-ranking,
which allows the memory controller to load data from different ranks into the same row
buffer; however this comes at the cost of extra logic and latency per memory channel.

Future work must thus determine the technology sweet spots that maximize external▷
memory parallelism, and thus the visible bandwidth, at a given logic and energy cost. The
memory topology must be exposed at the machine interface and the operating software must
use this information to map different software activities to different DRAM banks.

13.7.2 Internal bandwidth

The overall internal bandwidth of the on-chip networks constrains the communication pat-
terns of distributed algorithms and the minimum latencies of SIMD/SPMD operations. As
such it is a factor in the maximum performance that can be reached for a given workload.

Any given choice of platform parameters will yield a specific set of network properties.
For example, the memory network in the reference configuration has a theoretical point-
to-point maximum bandwidth of 512Gbit/s, and the delegation/distribution NoC has a
maximum point-to-point bandwidth of 8Gbit/s. Furthermore, any choice of protocol will
impact the visible internal bandwidth of the chip. For example, the proposed distributed
cache network uses update and eviction messages to propagate stores across caches. These
messages reduce the bandwidth available to other messages like loads. In [BGH+11] we
discovered that inter-cache management messages can cause a reduction of up to 40% of the
visible on-chip memory bandwidth.

We then considered whether this result is a suggestion that the chip designer should▷
provide wider network lanes and higher connectivity, and/or whether new protocols should
be designed with more control to software to avoid unnecessary traffic. However, any invest-
ment of logic into the network would reduce the maximum number of cores, and thus possibly
become detrimental to the performance of compute-bound workloads. This should remind

220 CHAPTER 13. CORE EVALUATION

us of the discussion in [EBSA+11], where the authors argue that for any given many-core
chip configuration a significant area of logic will be under-utilized, invisible to most work-
loads except the few that require it; this is subsequently called dark silicon. Addressing this
issue may involve the integration of re-configurable logic on chip, where a resource manager
on the chip would configure gates towards either extra network lanes (higher communication
bandwidth) or cores (higher computation throughput) depending on the workload. We are
not aware of any existing research in this direction at the time of this writing, and this issue
may constitute a basis for future research.

In the mean time, we should highlight here that any quantitative analysis of the high-level◻
issues about the internal parameters of a chip cannot occur before specific chip parameters
are selected. We can thus argue that the crystallization of a platform, such as performed
in this book, constitutes a necessary first step towards the development of actual CMPs
around hardware microthreading.

13.8 Relevance of thread-to-thread synchronizer sharings

We have explained in section 4.3.3.3 that the ability to share physical synchronizers between
multiple threads opens the opportunity to daisy-chain logical threads by overlapping the
visible window of adjacent thread contexts and spreading the logical indexes in a round-
robin fashion.

This feature was originally proposed to explore whether bulk created microthreads are
a suitable alternative to dependent sequential loops. The general idea is that expressing
a sequence as a network of dependent threads allows dependent threads from a loop to
execute in parallel and reduces the need for hardware logic that “discovers” concurrency
from the instruction stream. It was implemented in our platform, and we exposed language
constructs to use it in chapter 6. An example benefit of this feature can be seen above in
fig. 13.12. In these results, a single stream of data flows through a cryptography kernel
implemented both sequentially and using dependent microthreads for the inner loop. As
illustrated in the figure, using dependent microthreads increases the performance of most
kernels by 40%-90%.

Yet further analysis by [SEM09] suggest that the feature has only marginal benefits. It
only enables performance gains when both the following conditions are met:

• the loop has a constant stride;
• all carried dependencies fit in synchronizers (note that their number is limited due to
the substrate’s ISA register naming in the instruction format—our parameters from
chapter 8 further limit their number to 6).

Furthermore, the authors of [SM11] propose to rewrite automatically data-parallel workloads
that would require a dependent loop in sequential code using a regular dataflow graph that
would be efficiently executed using a specialized software scheduler running on multiple
microthreaded cores. This transformation has been prototyped successfully in a compiler.
As illustrated by fig. 13.2 (“Parallelised C”), this scheme obtains performance figures close
to the hand-optimized code.

Beyond the software scheduler of [SM11], we have identified other general ways to orga-◻
nize partially sequential computations between microthreads using only existing features of
the design:

13.8. RELEVANCE OF THREAD-TO-THREAD SHARINGS 221

• plain sequence between logical threads on each core can be requested by setting the
“block size” parameter from section 4.3.2.2 to 1;

• any reduction using commutative and associative operations on one core can be im-
plemented using only the “global” synchronizers shared by all thread contexts partici-
pating in a bulk creation:

– simple operations that require only one machine instruction can be used with a
global synchronizer as both input and output operand. The dataflow scheduler
will automatically serialize all such instructions in the pipeline, possibly out of
logical index order;

– complex operations that either require multiple machine instructions, or involve
updates to memory which must appear atomic, can be enclosed by a transaction
started with a “clear” operation to one of the global synchronizers, and ended
with a “set” operation to the same synchronizer. The clear operation both reads
from its operand and sets its dataflow state to “empty.” Once the first clear
executes, all further clears from other threads will suspend until the synchronizer
is set again. The set is then performed by the thread that has executed the first
clear at the end of its transaction. This wakes up another thread, which is given
a chance to run “clear” and open a new transaction, and so on.

• any reduction using associative operations on multiple cores can be implemented using
successive bulk creations of thread functions performing a parallel prefix scan [LF80,
SHZO07] of the data to reduce, or distribute local reductions as described in sec-
tion 11.2.4;

• efficient multi-core reductions using multithreading on each core for latency tolerance
can be achieved by combining the techniques above.

We have tested these opportunities and confirm anecdotically that they yield high core
utilization. Moreover, using global synchronizers for reductions further reduces register
file utilization, since the global synchronizers are only allocated once. To simplify the use
of global synchronizers for reductions in programs, we further suggest to introduce Cilk’s
hyperobjects [Lei09] as a low-level language feature in our interface language, upon which
further abstractions can be constructed; we are planning this implementation as future work.

To summarize, we have not yet found a decisive benefit of the “shared synchronizers”▶
pattern; instead we observed that its intended use cases can be addressed using other, simpler
features. Also, as illustrated in figs. 13.13 and 13.14, interleaving different purely sequential
activities on the same cores provides another means to maximize utilization of each core.
These observations may indicate that the “shared synchronizers” feature was an instance
of premature optimization. We could not conclusively support the need for this feature;
future work may even suggest to remove it from implementations to further simplify the
microthreaded cores and their conceptual model. Our careful separation of its description
in chapter 4, which isolates this feature from the more interesting aspects of the architecture,
was an intentional step in this direction.

222 CHAPTER 13. CORE EVALUATION

Summary

In this chapter we have shown that the provided platform support was sufficient to carry out
evaluation via reduced, yet fully functional benchmarks. Regardless of the specific perfor-
mance figures, the fact that evaluation was possible using traditional engineering workflows
is a sign that the platform “looks and feels” like traditional platforms sufficiently for inte-
gration in existing evaluation methodologies.
Furthermore, by looking at the evaluation results we show that the proposed tool chain was
appropriate to utilize efficiently the processing abilities of the new architecture for most
data-parallel workloads, and obtain higher performance densities than contemporary chip
architectures. As predicted in section 5.3, our technology empowered both our community∎◻
and ourselves to step out of the engineering effort and gain high-level insight over issues of
concurrency management and chip design, briefly exposed in this chapter.▶▷

Chapter 14

System-level issues
—Lessons learned on and about the way to integration

Abstract

During interactions with an audience, the platform provider may gain additional
insight about the innovation from the interaction process itself, independently from the
audience. In this chapter, we provide an example of this. During our implementation
work for the platform in part II, we discovered additional system-level issues not directly
visible to our audience when carrying out the evaluation work reported on in chapter 13.
Again, as predicted in section 5.3, these issues translate directly to feedback about the
architecture design. We document them here.

Contents
14.1 Mutual exclusion . 224
14.2 Event and fault management . 225
14.3 Virtual addressing trade-offs . 227
14.4 Implicitly carried state . 228
14.5 Process state, termination and reclamation . 232
14.6 Feedback from education activities . 233
Summary . 233

223

224 CHAPTER 14. SYSTEM-LEVEL ISSUES

14.1 Mutual exclusion

To manage shared resources, the platform must provide a means for the operating software to
negotiate atomic transactions, or mutual exclusion, over these resources from the perspective
of concurrent activities.

In the case of physical I/O devices that have specific locations on the chip, mutual
exclusion can be achieved by forcing the serialization of work at the locus where the physical
interface exists. For example, in our work, the processors physically close to the I/O devices
feature a unique thread context whereby remote requests to create work at that context
would not be accepted until the previous work has terminated. This is equivalent to the
“secretary” concept from [Dij71, p. 135], and transparently reuses the existing mechanisms
from chapters 3 and 4.

To control access to logical shared resources like heap allocators or logical queues, existing
software requires the availability of logical synchronization devices like monitors, locks or
semaphores. How these are implemented, whether via memory transactions over a cache
coherency protocol, or dedicated synchronization messages on a NoC, or a combination of
both, seems to us orthogonal to the architecture design principles from chapters 3 and 4.
Nevertheless, we were asked to make an educated commentary about the opportunity to
implement all logical synchronization devices using only the hardware-based serialization
mechanism described above. The motivation for this is to alleviate the need for global
coherency on the memory network (cf. section 3.4.1).

We can comment on this opportunity with two observations.
The first observation is that an efficient implementation of a back-propagation mechanism

of a contention situation to the locus of issue requires attention throughout the chip. To
understand why, consider first that proper suspension of a thread, in a manner that lets other
threads progress, requires to store the identity of the thread somewhere, i.e. in a dedicated
memory structure with a physical location. This state must then wait passively for a wake-
up event. This implies that a thread can only be woken up upon reception of an explicit
message by the locus where its continuation is stored. In the mutual exclusion scenario, if
a thread attempts to access a shared resource already in use, it must suspend; conversely,
when the shared resource is released, the resource must notify all physical locations that
contain suspended threads waiting on the shared resource. For example, with the physical
serialization outlined above, threads must suspend upon upon writing a creation request
over virtual channels to a contended shared resource; when the shared resource becomes
available, it must wake up, via flow control over all virtual channels to the resource, the
remote threads that were previously blocked.

A potential naive implementation of this necessary notification is based on the tradi-
tional concept of “waiting thread queue,” where each shared resource would store locally a
dynamically evolving set of client loci containing thread continutations to be resumed upon
release. This would in turn require a local memory whose size is linear with the total number
of loci in the system which may participate in the mutual exclusion. If any core must be able
to host a shared resource, this implementation would require a space requirement quadratic
in the size of the system. Instead, to minimize the overhead, a tree-like notification network
of virtual channels can be built from the shared resource to all candidate clients, using flow
control to control access to the shared resource. This in turn requires implementation of
flow-control fan-in at all branching points on the NoC with a prioritization scheme to avoid
starvation, multiplied as necessary if any core must be able to host a shared resource.

14.2. EVENT AND FAULT MANAGEMENT 225

The trade-off is therefore a choice between increased storage costs at each locus, or a
coordinated protocol between all loci which must in turn be made resistant to network
contention and faults, even when these originate from loci not participating in the mutual
exclusion.

The other observation is that it forces every access that queries the state of the shared
resource, even when it is not contended, to place a roundtrip across the NoC on the critical
path through execution. The latency of this roundtrip may become arbitrarily large depend-
ing on other activities on the NoC, even if the target shared resource is not contended. This
violates a common expectation about logical synchronization devices, that they should have
a local latency when they are not contended1 [MCS91]. To avoid this situation, dedicated
Quality of Service (QoS) protocols must be used on the NoC, in turn increasing implemen-
tation costs.

To summarize, support for logical shared resources requires support from the architecture▶
to negotiate mutual exclusion. Whether new dedicated hardware solutions are designed, or
existing synchronization mechanisms over cache coherency protocols are reused, any solution
must be scalable: not incur interference between unrelated activities and avoid mandatory
overheads for non-contended resources. Beyond our suggestions from section 13.8, the corre-
sponding mechanisms are not yet clearly defined in the architecture design from chapters 3
and 4 and must thus be addressed in future work.

14.2 Event and fault management

As soon as work starts to define a full system, the need arises throughout to handle unex-
pected conditions. Here we exclude software exceptions that can be implemented coopera-
tively using software techniques only, and those hardware faults that can be hidden from
software entirely (via redundancy, hardware error correction, etc.). We further consider
separately traps, which are caused by programs as an effect of performing particular actions
(e.g. divide by zero, address translation fault) and asynchronous events which are not ex-
pected to occur at specific points during execution, but are still expected to occur sometimes
(e.g. availability of out-of-band input on a communication channel, termination of a child
process). The latter must be supported in particular before a system can be advertised as
an interactive general-purpose platform (cf. section 1.2.1).

Traditionally, the common mechanism used to report both traps and asynchronous events
is to interrupt an instruction stream, and transfer control of its execution preemptively to
a configurable event handler which may then decide to either address the exception and
transfer control back to the program, or trigger an alternate behavior, including possibly
program termination. In contrast, in a parallel setting with potentially many threads of
execution, a diversity of solutions may be considered.

One alternative, used in the POSIX threading API, is to report traps via interrupts
to the specific thread that causes them, and report asynchronous events via interrupts to
one, non-deterministically chosen thread among those currently executing threads that have
declared their readiness to be preempted via sigaction and sigsetmask. There are two
known shortcomings to this approach that limit its scalability to larger parallel systems. One
is that every event in the system, including non-local communication events, must encode
the identity of its causal thread somehow so that an error can be reported accurately.

1e.g. the time to acquire a lock that is not previously locked, or to decrease a semaphore with a counter
still greater than 1, should stay minimal and independent of the overall system activity.

226 CHAPTER 14. SYSTEM-LEVEL ISSUES

While this is cheap to achieve for FPU exceptions, it may cause a burden on the hardware
with e.g. accesses to virtual memory when address translation is resolved by a common
MMU shared among many cores, or accesses to I/O channels when events may be detected
topologically far from the locus of thread execution. The other shortcoming is that this form
of reporting requires every thread to have access to an area of storage where its current state
can be saved at the point the signal handler is invoked. As we have explained in chapter 9
this is a non-trivial requirement as the number of threads grows.

There several other alternatives possible.
The designers of UTLEON3 propose in [DKK+12] to stop the execution of all currently

running threads, and trigger the execution of a high-priority “handler thread” that would
run to completion before execution of the other threads resumes. This mechanism was also
suggested earlier by the author of [van06]. This mechanism is intuitively appropriate to
handle asynchronous events, or to cause termination upon traps, but it does not let software
react to salvageable traps such as floating-point exceptions. In [van06], we can find an
extension of this solution which proposes to:

• report traps to their causal threads by suspending the causal thread, triggering execu-
tion of a separate, fault handling thread on the same core, and have the fault-handling
thread automatically receive from the hardware, as input parameter, the identity of
the causal thread. Upon resolving the behavior, the fault-handling thread could then
choose between resuming execution of the causal thread or trigger some alternate
behavior like program termination.

• for asynchronous events, simply create new, regular threads for each event received.

Both with this solution and the UTLEON3 solution above, the reason why interruption
of the control flow cannot be used is that the visible synchronizer window layout (cf. sec-
tions 3.3.3 and 4.2 and chapter 8) expected by the fault handler may not be compatible
with the window layout of any of the currently executing threads. Note however that this
physical separation between causal threads and fault handling threads does not imply that
the fault handler cannot impact the control flow of the causal thread: the hardware interface
could provide a primitive to the fault handler to override the PC of the causal thread and
write its registers remotely. This would in turn be sufficient to allow individual threads to
register different exception behaviors in software, and implement e.g. C’s longjmp, which is
the traditional mechanism to override control flow from asynchronous handlers.

A more interesting issue related to the creation of new threads is that existing software
frameworks often assume a consistent view of all the program’s variables when an event
handler is invoked. The corresponding issues from chapter 7 notwithstanding, with a large
many-core system this expectation would require global synchronization of the memory
state at every event delivered, in turn significantly impacting performance. While global
synchronization could be envisioned for rarely expected faults, it seems too expensive to
require for general asynchronous events such as notifications for external input.

Researchers in operating system and language design may see here an opportunity to
redefine the software abstractions for handling unexpected events, including abandoning
the vocabulary related to “interrupts” and “control flow preemption.” A future-oriented
solution may include abandoning precise exceptions and global view on the program state
altogether, and acknowledging that the physical location of the execution of an event handler
on chip will impact how much of the program’s state it can observe. However, embracing
this conceptual revolution so early would be ill-advised, since, as we explained in chapter 5,

14.3. VIRTUAL ADDRESSING TRADE-OFFS 227

CPU CPU CPU

Storage

VT VT VT

Logical addresses translated locally

Inter-core storage
network uses
physical addresses

Storage

(a) Address translation occurs at the point
of issue.

CPU CPU CPU

Storage

Logical addresses translated at
storage interface

Inter-core storage
network uses
logical addresses

VT

Storage

VT

(b) Address translation occurs close to the
storage.

Figure 14.1: Possible locations for the address translation logic on chip.

integration in existing ecosystems requires solutions that preserve current abstractions, at
least in an initial phase.

Instead, we propose as an alternative approach to exploit the companion processors that◻
we introduced in section 5.5.1. For this, we first differentiate between programs that explic-
itly manage exceptions, recognized by their explicit use of the signal and sigaction APIs,
from those that don’t. The programs that use the API are then constrained to always execute
on the companion processors, where their threads can be interrupted in the traditional way.
The programs that don’t use the API are not constrained and can be mapped anywhere
on the chip; any system exceptions they receive are then handled in the way compatible
with the default POSIX behavior, i.e. either by ignoring them (e.g. SIGIO, SIGURG) or by
causing termination of the entire program (e.g. SIGINT, SIGSEGV). This solution preserves
past assumptions for programs that exploit them, while letting assumption-free programs
take advantage of all the architecture’s features. However, we did not evaluate this solution
experimentally and cannot report on its implementation costs.

Regardless of which solution is eventually adopted, we highlight that the mechanisms for▶
handling unexpected events must be duly documented and illustrated before the proposed
architecture can be used as a general-purpose substitute by its envisioned audience.

14.3 Virtual addressing trade-offs

In the proposed target ecosystem from section 5.4.1 and others, support for virtual address
translation is expected from the hardware to implement storage virtualization and process
isolation.

We were asked to make an educated commentary about the spectrum of choices about
where on chip to perform translation, which we illustrate in fig. 14.1: either translation can
occur at the locus where memory requests are issued, i.e. close to the cores, or it can be
centralized and shared between multiple cores. Centralization is possible because, with the
generalization of 64-bit wide addresses, the address space may be sufficiently large to host

228 CHAPTER 14. SYSTEM-LEVEL ISSUES

the data manipulated by all concurrent activities in the system. Meanwhile, isolation can be
provided using capabilities [JLI98] over regions of the shared address space. This is the view
taken by Opal [CBHLL92], Mungi [HEV+98], Mondrian [WCA02] and other Single Address
Space Operating Systems (SASOSs). For example, in our work, the implementations for
the design from chapters 3 and 4 perform address translation at the chip boundary with a
distributed MMU, one per DDR channel. We comment with two observations.

The first is that most target ecosystems, in particular those identified in section 5.4.1,
have historically established a strong conceptual binding between process boundaries and
virtual address spaces, for example the expectation that each process has its own “private”
address space to storage. To preserve this mindset, a system implementation that shares
translation management between multiple cores, such as the platform considered, must
either:

• ensure that processes with distinct address spaces are segregated to separate locations
on the chip, so that the physical source of a memory request is sufficient to distinguish
its originating process, or

• explicitly communicate with every memory request the identity of the issuing process.

The former approach would be detrimental to utilization and performance when there are
more processes active than translation domains, even if the total number of processes is
smaller than the number of cores. The latter approach is costly in either hardware logic or
performance as larger mapping caches (e.g. TLBs) will be needed to support larger numbers
of processes. These trade-offs are analogous to the opposition between virtual vs. physical
cache indexing discussed in [CD97a, CD97b].

The other observation is that any choice as to where address translation occurs must be
combined with a choice as to where process boundaries for isolation are checked. Process
boundaries are typically checked by system services, such as resource managers, to ensure
that separate processes obtain separate views on the service. In presence of virtual address
translation, each entity that checks process boundaries must be able to look up data in
memory on behalf of a requesting process, i.e. relative to the private address space of the
requesting process. This in turn implies that system services are also “clients” to translation
and participate in the design trade-offs identified above.

To summarize, we cannot determine whether centralization on the chip of address trans-▷
lation and isolation checks can yield significant benefits for the target ecosystems without
looking quantitatively at the number of separate processes that would be defined. Neverthe-
less, we are able to argue that address translation and the definition of process boundaries
must be handled in the same design discussion, because the system services that check
process boundaries are also clients to address translation.

14.4 Implicitly carried state

The standard C library, like most traditionally sequential APIs offered in existing general-
purpose systems, depends on implicitly carried state invisible from programs. We detail this
observation below in sections 14.4.1 and 14.4.2, as well as its likely impact on system design
in section 14.4.3.

14.4. IMPLICITLY CARRIED STATE 229

State Carried by Reset by Averted by
Set of opened file
descriptors

open, close, exit
(system)

N/A N/A

File positions read/write seek, lseek pread, pwrite,
aio_*

Set of opened streams fopen, close, exit
(C library)

N/A N/A

Status of standard
streams (stdin,
stdout, stderr)

puts, printf,
getchar, scanf, etc.

N/A Explicit stream
operands (fputs,
fprintf, etc)

Error status (errno) All APIs related to
system interfaces

(program) N/A

dtoa allocator’s
internal state

dtoa, (f)printf N/A N/A

malloc’s internal
state

malloc, free,
realloc, calloc

N/A Anonymous mmap

Set of memory
regions visible by
program

mmap, sbrk, shmat N/A N/A

Environment
variables (environ)

getenv, setenv N/A N/A

Registered
destructors

atexit, exit (C
library)

N/A _Exit

Floating-point
environment

Math functions fesetenv #pragma STDC
FENV_ACCESS OFF

strtok buffer strtok strtok strtok_r, strsep

Table 14.1: Implicitly carried dependencies in C/POSIX APIs.

14.4.1 Problem statement

The assumption of sequential program execution has traditionally enabled API designs with
implicitly carried state from one API call to another. For example, POSIX’s read and write
calls carry the current I/O position in the file implicitly from one call to the next. Due to
their history as an environment for mostly sequential programs, both the C language, the
POSIX interfaces and other API framework for general-purpose programming languages are
rife with sequential APIs; we list the most common from Unix in table 14.1.

There is no theoretical difficulty here: a given sequential programming interface is either
known to be appropriate for concurrent calls (this is documented as “reentrant” or “thread-
safe”), or it is not. Practically, this difference determines who is responsible for ensuring
proper synchronization: in the former case, the service provider must provide synchroniza-
tion, and in the latter case the application programmer must ensure that calls are synchro-
nized. Race conditions occur when neither take this responsibility, and over-synchronization
occurs when synchronization is negotiated on both sides of the service interface.

What we found interesting however, is the impact of this semantic mandatory sequen-◻
tialization on multithreaded performance: regardless of the overall structure of the program,
how it organizes concurrency between components, and how API services are implemented,

230 CHAPTER 14. SYSTEM-LEVEL ISSUES

Sequential API
with carried state

time

space (location on chip)

program A
program B

Figure 14.2: Forced synchronization through sequential APIs.

the set of all effective API calls to sequential APIs during execution constitutes an implicit
sequential path, invisible from the explicit program description.

We illustrate this in fig. 14.2: even when threads of distinct application components are
independent from each other, an implicit synchronization occurs every time they issue a call
to a common API. The API service, as a participating entity during the execution, is in
fact a shared resource which can cause contention.

In general terms, the implicit sequential path of a sequential API becomes part of the
critical path of execution, and thus a constraint on performance, if the overall issue rate of
API calls across all threads to the API provider becomes equal to the maximum bandwidth
of the API provider.

14.4.2 Contended resources

In our setting, the large amount of concurrency available in hardware allows us to increase
the issue rate to a sequential API far beyond the bandwidth of single cores where the API
runs. We observed concrete occurrences of contention caused by sequential APIs in the
following circumstances:

• dynamic memory allocation: calls to the malloc and free APIs are frequent, for
example in code from higher-level programming language like SAC [GS06]. They
cause contention if served by a single heap allocator. We were able to reduce this effect
partially by using a concurrent heap allocator, however larger numbers of concurrent
heaps in turn cause contention on system-level dynamic allocation of physical RAM
pages to back the virtual address space;

• memory reclamation: to enable garbage collection of unreferenced arrays in SAC pro-
grams, we developed jointly with our project partners a deallocation strategy based on
reference counting. This strategy uses a system service for mutual exclusion to protect
concurrent accesses to the reference counters. In this work, we found that the set of
updates issued by independent threads to single reference counters cause contention
on highly parallel workloads. We document this in [HJS+11];

• dynamic processor allocation: to enable dynamic placement of application components
to processors, we implemented an allocation API for processors that programs can use

14.4. IMPLICITLY CARRIED STATE 231

to reserve and release entire clusters of processors at once, using the abstractions
introduced in [JPvT08] and chapter 11. Since this allocator must keep a map of
which cores are allocated as implicit state, we also found that it becomes a source of
contention on dynamically heterogeneous workloads.

In contemporary applications running on other platforms, this source of contention is
usually averted in either of three ways:

• either the issue rate (average number of calls per unit of time of all threads) is kept
low, by either having few threads running overall or concentrating most API calls in
a “control thread”; or

• process boundaries are introduced between application components, so that the se-
quential APIs in each process can be served by separate service providers in operating
systems (for example, operating system kernel components running on separate pro-
cessors); or

• programs avoid using sequential APIs altogether, substituting uses of distributed ser-
vices instead.

We highlight that explicit control of API issue rates is impractical in most programming▷
languages and that process boundaries increase the communication latency between appli-
cation components. Therefore, any new system implementation which aims at providing a
general-purpose platform must provide contention-less equivalents for at least these services
listed in table 14.1, for these are the services in pervasive use across most current appli-
cations and language run-time systems. Here we would like to suggest further that major
abstractions in existing operating systems will be altered during this process.

To support this statement, we take the example of file I/O. The most intuitive carried
state of read/write is the file cursor at which I/O operations are effected. It is possible
to remove this carried state as in pread and pwrite, which take the file position as an
explicit argument. Unfortunately, the file descriptor remains: every POSIX call which
manipulates file descriptors must check whether the descriptor is valid and which object
it designates in the virtual file system; this mapping of descriptors to objects is a carried
state updated by the global sequence of calls to open and close. To remove this state,
it is necessary to design the file access API to use stateless file descriptors, which do not
need to be explicitly opened/closed. Although this feature is yet rarely used directly in
applications, it is already available in popular distributed file systems (e.g. Sun’s Network
File System (NFS) [SGK+85], Hadoop [SKRC10]) and we predict its increased use in disfavor
of Unix’ traditional numeric file descriptors. This may have a dramatic impact on other
APIs, such as select, or otherwise program algorithms which assume descriptors numbered
contiguously from 0.

14.4.3 General problem and consequences on hardware design

While single-machine operating systems with a distributed internal structure are a mature
and well-studied field of research [TVR85, TR86, SJ96, TS06], we found that the focus
of most previous research on internal system data structures was on state isolation for
security, both to increase accountability and fault tolerance. Comparatively, little research
has been carried out to optimize performance via distribution within operating systems until
recently [SPB+08, WA09].

232 CHAPTER 14. SYSTEM-LEVEL ISSUES

Instead, we found previous work on performance scalability at the level of networked
application services. An exhaustive and comparative review of application-level schemes are
available in [Fie00], whose author revolutionized the exploitation of applications over the
Internet by popularizing REST protocols: client-server, stateless, cacheable, and layered.
Modern distributed file systems provide REST protocols; we suggest that future machine
level services in operating systems should feature REST protocols as well to implement
logical, software-only services.

The limit of the REST vision, however, is reached with shared physical resources such
as address spaces in storage or external I/O ports, because the physical reality of their
implicitly carried state cannot be moved around the system via logical messages.

We can predict a mandatory clustering of physical resources as a consequence. As the▷
amount of general-purpose concurrency in application increases, so does the concurrent use
of system services; a given number of effectively parallel threads of execution will thus
necessarily translate to a lower bound on the required bandwidth from system services
providing access to shared physical resources. Since the energy and memory walls apply
to system services as they do to applications, the only way forward to reduce contention is
parallelism, i.e. multiply physical resources (memories, I/O connections, accelerators) and
bound the visibility of each resource to processing elements that are topologically close.
The resulting system structure is a constellation topology where each cluster has a limited
amount of processing elements sharing common system services, with little to no visibility
to the system services of other clusters. This vision has been reached independently, with
the same justification, by the authors of [WA09].

14.5 Process state, termination and reclamation

While working on the implementation of system services as per chapter 5 and section 6.4.3,
we struggled with process termination. The problem stems from the semantics of the exit
system service and termination signals as triggered by POSIX’s kill, abort or C’s raise:
when these events are triggered by a program, the run-time environment must terminate
the program and reclaim its resources. Since these events can be triggered by one thread
while other threads in the same process are active and running, a mechanism must exist
to stop the execution of all threads preemptively and reclaim all memory and other system
resources that were allocated so far.

Next to process termination, we also struggled to define process data encapsulation.
Process-specific data in C comprises all mutable objects defined by programs and library code
in the global scope, the shared heap(s) and thread stack(s). The most often used process-
specific data from library code are the standard I/O streams (stdin, stdout, stderr), and
the error status code variable (errno). While it is possible to encapsulate these variables
behind accessors, as in the BSD code which substitutes all uses of the word “errno” by a
call to a function “__error(),” the implementation of these accessors itself must have access
to process-specific variable instances. The issue we faced was how to look up which instance
to use from a given thread, as the proposed machine interface does not provide the notion
of process identity.

To summarize, the need to support process data encapsulation as well as resource recla-▶
mation upon program termination places two requirements on partial hardware support for
concurrency management, in particular the design from part I:

• mechanisms must be available to bind allocated resources, e.g. memory and I/O chan-
nels, to process identities which can be used to look up process-specific data and delimit

14.6. FEEDBACK FROM EDUCATION ACTIVITIES 233

the extent of resource reclamation upon termination. Our proposal to introduce vir-
tual resource identifiers in the TLS addressing scheme (cf. section 9.4.2.3) makes a
first step in this direction; however, a fully general solution requires an interface to
bind thread contexts to process boundaries and communicate automatically process
identities to system services upon resource allocation events;

• once process identities are available, mechanisms must be available to both inquire from
any thread the identity of the surrounding process, and to asynchronously terminate
all concurrent activities belonging to a given process.

14.6 Feedback from education activities

Our framework was further used during various education projects at undergraduate levels.
Using our proposed interface language and the separately provided full-system emulation,
students have implemented various applications (Conway’s Game of Life [Gar70], sorting
algorithms, image processing filters, compression algorithms, signal processing, Scheme in-
terpreter, and others) and demonstrated the effective use of single-core multithreading and
multi-core execution to accelerate performance with relatively naive source code. The over-
all conclusions from this work regarding the evaluation of the architecture are similar to
those outlined in chapter 13; however, we gained additional experience from working with▷
students:

• comprehensive support for a large subset of the standard C library and POSIX inter-
faces is a strong prerequisite for students who have little previous exposure to operating
system and language design. Indeed, most students seem to have troubles distinguish-
ing whether program constructs are part of the language, the standard library, or the
system interfaces. When the focus of a teaching activity is the introduction of new
language features (e.g. concurrency constructs in our case), diluting the students’ at-
tention by forcing them to also deconstruct and re-learn C becomes detrimental to
their success;

• similarly, a comprehensive troubleshooting infrastructure is essential to keep teaching
activities focused, especially to avoid wasting student time with programming errors
in the framework or conceptual issues in the new architecture design. Our choice to
mandate serializability in the language semantics (cf. section 6.2.4) helped by allowing
students to test and troubleshoot their programs independently from the new archi-
tecture. However, student progress was hampered by the lack of run-time program
introspection tools to visualize trade-offs related to load balancing and scheduling.
They also missed troubleshooting tools to help recognize false assumptions, in partic-
ular those about the memory consistency model.

To summarize, exposing a new platform to students during teaching activities was an
effective way to exercise the tools and increase their accessibility. However, teaching ac-
tivities confirm the usefulness of conceptual backward compatibility, such as introduced in
chapter 5, since it is educationally difficult to introduce simultaneously new programming
abstractions and a new vision on the system stack.

234 CHAPTER 14. SYSTEM-LEVEL ISSUES

Summary

Although our work was taking the perspective of existing and legacy operating software, we
were able to recognize some general issues relevant not only to the envisioned audience:

• mechanisms for mutual exclusion: this must be addressed by provisioning and adver-▶
tising dedicated mechanisms in hardware;

• unexpected events and their reporting to programs: this must be addressed by intro-▶
ducing support for asynchronous notifications;

• the cost trade-offs related to the choice of a centralized MMU for address transla-▷
tion: these must be addressed by the system integrator in a dialogue, taking into
consideration the environment where the system is to be used;

• performance bottlenecks due to stateful system services: this must be addressed by◻▷
provisioning sufficient bandwidth to these services and evolve API designs to expose
more concurrency;

• process-specific data and resource reclamation upon termination of programs: this▶
must be addressed by introducing support for process identities;

• troubleshooting and inspection facilities must be provided to aid learning audiences in▷
understanding the run-time behavior of their applications.

These issues must be further researched in future work before the design can be advertised
as a general-purpose substitute to any of its candidate ecosystems.

Chapter 15

Conclusions and future work
—on the interplay between inner and outer questions.

It is pitch black. You are likely to
be eaten by a grue.

Dave Lebling, via Zork

Contents
15.1 Design principles and opportunities . 236
15.2 Inner vs. outer questions: a retrospective . 237
15.3 Where to go from here? . 240

235

236 CHAPTER 15. CONCLUSIONS AND FUTURE WORK

15.1 Design principles and opportunities

When the design principles behind hardware microthreading were first proposed, the envi-
sioned features with the largest impact on performance were the exploitation of dataflow
synchronization over instruction operands to implement dynamic scheduling, the accelera-
tion of thread creation and synchronization in hardware via elementary machine instructions,
and the unification of single-core and multi-core thread management under a common pro-
tocol also supported in hardware [BJM96, BHJ06a]. The more concrete CMP architecture
described in part I constitutes a subsequent effort to consolidate and integrate these features
so as to enable their empirical evaluation.

As we discovered, the principles of hardware microthreading impact the hardware-software
interface beyond the extension of registers with dataflow state bits and hardware support
for thread creation and synchronization. In particular, it the following extra features are
visible from software:

• configurable register windows: the software can choose, upon the activation of a hard-
ware thread, how many physical synchronizers (registers) are visible from the thread.
This departs from previous ISAs where the number of registers is an architectural
constant. The purpose of this change is to provide more efficient use of the register
file by heterogeneous workloads.

• active messages and asynchronous notifications via thread creation: the reception of an
external, asynchronous event by a processor core triggers the creation and activation
of a new hardware thread, instead of the interruption of the control flow of an existing
thread. This departs from previous ISAs where asynchronous events are delivered via
interrupts. The purpose of this change is to simplify the individual core pipeline.

• hardware synchronization services separate from main memory : the extension of reg-
isters with dataflow state bits, together with the integration of a dedicated delega-
tion/distribution NoC with the hardware scheduler on each core via the TMU, provides
dedicated hardware support for I-variables, named critical sections, locking, barriers
and semaphores. This departs from previous ISAs where synchronization semantics
were provided as side-effects of ordering constraints on load and store operations to
main memory. The purpose of this change is to provide lower synchronization over-
heads and a higher execution efficiency.

On their own, these extra features do not fundamentally interfere with existing ISA
semantics. The system programmer can configure the register window of all threads to use
a fixed number of registers, at the cost of a lower register file utilization, to obtain the
fixed window semantics of previous ISAs. The designer of individual cores can integrate
hardware microthreading in an existing RISC core without removing the interrupt delivery
logic to preserve the preemption semantics of previous ISAs. The chip designer can integrate
hardware microthreading in a CMP without removing support for consistency control in the
caches and the memory network, to preserve the memory-based synchronization semantics
found in existing CMPs. In theory, there is thus space in the design spectrum for a new
CMP constructed from legacy RISC cores with hardware microthreading integrated as an
extension. We depict this opportunity in fig. 15.1.

However, the researchers at the University of Amsterdam have made one further design
step before investing in an implementation. They observed that asynchronous event deliv-
ery via thread creation is redundant with support for interrupts, and they observed that
a dedicated synchronization protocol in hardware is redundant with memory support for

15.2. INNER VS. OUTER QUESTIONS: A RETROSPECTIVE 237

registers

interrupts

RISC core

memory-based
synchronization

registers

interrupts

SMP

memory-based
synchronization

registers

interrupts

hardware
threads

SMP+HMT
(eg Niagara)

memory-based
synchronization

dataflow
synchronizers

interrupts

logical hardware
threads

hardware thread
management

hardware
synchronization

configurable
register windows

Theoretical
CMP with
hardware

microthreading
as "extension"

dataflow
synchronizers

logical hardware
threads

hardware thread
management

hardware
synchronization

configurable
register windows

Proposed
CMP

architecture

logical hardware
threads

hardware thread
management

hardware
synchronization

Motivating features
of hardware microthreading:

dataflow
synchronizers

Fe
at

ur
es

 o
f t

he
 h

ar
dw

ar
e-

so
ftw

ar
e

in
te

rfa
ce

evolution

Figure 15.1: Features of the machine interface across CMP designs.

Configurable register windows, although characteristic of the design, are not motivating features;
they are “merely” a quite useful optimization towards increasing utilization of large register files.

synchronization. Consequently, they decided to omit the corresponding support from their
envisioned implementation of hardware microthreading, so as to simplify the hardware logic
and thus increase execution efficiency further. The resulting CMP architecture, which we
detailed in part I, is also depicted in fig. 15.1.

15.2 Inner vs. outer questions: a retrospective

The computer engineering steps to a product applicable to problems outside of computing
science requires the participation of practitioners across multiple fields. In particular, any
innovation at the level of individual components requires both to narrow down the substance
of the innovation, that is what the new components look like, and to demonstrate its ap-
plicability in a larger system, that is how to integrate the new components. These are two
phases of the engineering process, which we identify respectively in chapter 1 as the answers
to the “inner” and “outer” question around innovation in computer architecture.

Previous work on hardware microthreading had focused mainly on answering the inner
question. The publicly funded project from which this book originated, Apple-CORE, was
an initiative to follow up with answers the outer question by multiple research organizations.
As a member of this research community, we did not independently answer the inner nor
the outer question around hardware microthreading; instead, we have:

1. recollected the collective work on the inner question (part I);

238 CHAPTER 15. CONCLUSIONS AND FUTURE WORK

2. proposed enabling technology to help the collective answer to the outer question (chap-
ters 6 and 8 to 11);

3. summarized the current collective work to the outer question (chapters 13 and 14).

The vantage point of the interface between platform provider and operating software
providers provided two unique opportunities. First, we could identify several points where
the answers to the outer question influence the answers to the inner question, i.e. where
integration provides feedback on design. We recollect these in section 15.2.1. Then, by
studying the consequences of removing features from the machine interface, we gained in-
sights about what are the fundamental requirements of general-purpose computing and how
they are affected by hardware microthreading. We comment on this in section 15.2.2.

15.2.1 Feedback on the inner question

By inviting operating software providers to interfere with the architecture design, we enabled
a form of hardware/software co-design. For example, as we show in chapter 4, separate com-
pilation in software engineering mandates a specific choice for the implementation of config-
urable register windows, which would be otherwise neutral from the architect’s perspective.
More generally, as we argue in chapter 5, early feedback helps saving on development costs
by avoiding design points which hinder further integration.

Beyond potential benefits in optimizing the overall engineering process, answering the
outer question early also reveals additional requirements on the design of individual com-
ponents. For example, as we show in chapter 9, the efficient provisioning of TLS, which
is a logical feature of software, in turn requires ISA extensions and special support from
caches. As we discuss in chapter 14, logical mutual exclusion considered as a software ser-
vice requires to extend the proposed hardware synchronization protocol and may constrain
the chip topology. As we argue in chapters 9 and 14, further support for process isolation
and virtual memory addressing will require mechanisms for process identification in the
hardware concurrency management protocol.

These observations confirm that combining integration with design is not merely a ben-
efit to the platform provider; it is actually a necessity to avoid the HIMCYFIO pitfall we
identified in chapter 1.

15.2.2 General-purpose computing and hardware microthreading

Beyond the productivity advantages of automated computing, the advent of general-purpose
computers was a key step forward in the progress of mankind: it democratized the process
of constructing solutions in software to both current and future problems at virtually no
cost.

Meanwhile, serious upcoming technology challenges are the cause of a flurry of contem-
porary research activities around multi-core architectures and parallel programming. As we
acknowledged in chapters 1 and 2, these challenges can be partially addressed by creating
faster and more efficient chips tailored to specific applications. However we argue that any
durable solution should strive to preserve generality in our computing artefacts. In the
context of hardware microthreading, this issue is relevant because some features that make
legacy processors fully general, namely the semantics of main memory and asynchronous
event delivery, are altered in the proposed CMP design.

As a first step towards illustrating the generality of the design, we demonstrated that the
resulting chip can run arbitrarily sequential computations described by a general-purpose

15.2. INNER VS. OUTER QUESTIONS: A RETROSPECTIVE 239

language, by constructing a C compiler and implementing minimal support for a C library
(chapter 6). Towards asynchronous event delivery, we are able to use thread creation instead
of control flow interrupts for external I/O (chapters 5 and 6). We discovered ground for
further research towards supporting traps and exceptions (chapter 14), which we mention
again below in section 15.3; however we believe that there are no further conceptual issues
with claiming that spontaneous creation of logical threads constitutes a workable substitute
to interrupt delivery.

In contrast, we discovered fundamental issues related to the interaction between cores and
memory when using the proposed CMP for parallel computations. Beyond the requirement
that multiple logical threads must each independently have access to TLS to fully simulate
communicating processes where each process is Turing-complete, a topic which we explore
in chapters 9 and 12, we discovered two major concerns.

Our first concern is that the generality of a parallel computing system, as opposed to
a single-processor computer, is dependent on the ability to define arbitrary communication
patterns between simultaneously running processing agents. By simplifying its individual
cores and weakening its memory semantics, two choices motivated by potential reductions
of hardware and energy costs, the designers of the proposed CMP have abandoned the
memory-based mechanisms to define arbitrary parallel computations that had been devised
in previous SMP architectures. To our knowledge, no prior work had acknowledged this
differentiation as we do in chapter 7. To preserve generality while keeping the benefits of
a simplified design, we propose in chapter 7 new semantics for programming languages to
define arbitrary communication patterns over a weakly consistent memory and a dedicated
synchronization protocol, such as found in the proposed CMP. Then, in chapter 12, we
show how the proposed CMP could theoretically run programs assuming previous abstract
concurrent execution models.

Our second concern is that software audiences rely on the ability to abstract hardware
resources in programming languages, a requirement which mandates mechanisms to virtu-
alize resources. As we argue in chapter 10, each resource type potentially needs different
mechanisms. For storage and I/O, a well-know mechanism is the address space virtualization
provided by address translation in hardware. This facility is largely preserved with hardware
microthreading, although it receives a new interface and thus mandates some extra atten-
tion in operating software (chapters 5, 9 and 14). Meanwhile, the introduction of hardware
microthreading implies the apparition of three new hardware resource types that now need
to be virtualized: thread execution contexts, bulk synchronizers and dataflow synchronizers.
For thread execution contexts, the machine interface already proposes thread virtualization
by automatically multiplexing logical threads over hardware contexts (chapters 3 and 4).
However, as we highlight in chapter 14, the coarser-grain activities spawned by multiple
separate software applications sharing hardware resources may in turn mandate new mecha-
nisms to virtualize entire multi-threaded processes (as opposed to single threads), which we
outline at a high level in chapters 9 and 14. For bulk synchronizers, we argue in chapter 10
that the advent of declarative concurrency in programming languages obviates the need to
virtualize individual bulk-created and bulk-synchronized “families” of logical threads. We
have not yet found suitable mechanisms to virtualize dataflow synchronizers, and we suggest
that a solution should be proposed in future work before hardware microthreading becomes
fully accepted by software communities.

240 CHAPTER 15. CONCLUSIONS AND FUTURE WORK

15.3 Where to go from here?

There are two perspectives to suggest future work.
The first is the perspective of the innovator, or the research group(s) who will follow up▶

on the inner question: research on the substance of hardware microthreading. By exposing
the innovation to current software ecosystems, we revealed that the inner question has not
yet been fully answered. Namely, key architectural features and research issues must be
addressed before the design becomes fully suitable for use in applications:

• the memory architecture must be fully defined, including its topology and address-
to-bank mappings and virtual address translation mechanisms. As we discussed in
chapters 7 and 9 and sections 13.7.1 and 14.3, the memory system’s characteristics
will impact how run-time operating software will be constructed around the platform;

• the architectural support for concurrency management must be complemented with
support for asynchronous events and traps. Barring the reintroduction of control flow
preemption, it is not yet clear how software can react to unforeseen circumstances
in the run-time environment. As we highlighted in chapter 14, any programming
language implementer for this platform will require a clear vision on this topic before
it can be used to implement larger applications;

• proper support for process boundaries must be introduced in the machine interface.
We have specifically highlighted in chapters 6, 9 and 14 that resource reclamation
(memory, cores, thread contexts) upon process termination requires the identification
of resources that belong to different processes. Process boundaries are also needed
to provide isolation and accountability, which we did not cover in our work but are
expected from all software ecosystems. The current hardware interface does not yet
address these aspects;

• proper support for resource virtualization must be proposed and documented. While
the machine interface proposes automatic virtualization of tasks as logical threads
(chapters 3 and 4) and we could propose mechanisms to virtualize bulk synchronizers
(chapter 10), no mechanism yet exists to fully virtualize the dataflow synchronizers
and entire processes;

• performance and resource models must be devised that establish a relationship be-
tween the architectural parameters and the behavior of programs. As we illustrated in
chapter 13, naively implemented algorithms are able to obtain a comparatively higher
throughput per unit of area than with legacy chips. However, performance scalability
is actually constrained by a combination of parameters [GBK+09]: on-chip communi-
cation bandwidths, number of thread contexts per core, number of cores per L2 cache,
etc. As we suggest in chapters 11 and 13, the implementation of space schedulers in
operating software by third parties will only be possible once models can successfully
predict the performance of program components running on different regions of the
chip.

The other perspective is that of the computing science community who will follow up on▷
the outer question: developing the context where hardware microthreading can be applied.
We foresee the following necessary steps:

• while the research topics listed above are being studied, test and simulation platforms
must be developed where the updated chip designs can be evaluated across a larger
range of applications, including larger workloads. During our own work, we had ac-
cess only to a low-level simulation of the multi-core design running at a few million

15.3. WHERE TO GO FROM HERE? 241

instructions per second and a single-core implementation on an FPGA. To our knowl-
edge, this is a common limitation in most contemporary research projects in computer
architecture. To support larger workloads during testing, including industry-standard
benchmarks, faster simulators and emulators for many-core chips must be developed:
either higher-level simulations in software running on distributed computational clus-
ters, or by connecting multiple FPGA platforms via high-speed networks that mimic
on-chip topologies;

• to support the diversity of existing software frameworks, further operating software
must be developed to expose the generality we revealed in chapter 12. We could
envision, for example, custom implementations of the POSIX threading library or ISO
C11’s concurrency management primitives, an implementation of MPI, a back-end for
an OpenCL compiler, or support in the run-time system of fashionable productivity
languages like UPC or Chapel;

• an exploration of the architecture design space must take place to determine a balanced
configuration of cache sizes, number of thread contexts per core, number of cores,
number of synchronizers per core, and NoC characteristics for a given technology and
area budget. This is necessary to eventually lay out the floorplan of a chip to estimate
its power requirements prior to manufacturing.

We highlight that these steps are not specific to the design we presented in part I. They
apply to any innovation in general-purpose microprocessor design that pushes for large-scale
parallelism on chip.

Chapter 16

Epilogue on the outer question

Hardware microthreading may be a suitable answer to the obstacles currently standing in
the way to better, faster and more efficient building blocks for general-purpose computers.
Yet the evaluation of this innovation has been carried out so far only via small computa-
tion kernels performing no I/O, and thus far removed from contemporary applications and
software ecosystems.

As we have illustrated, innovation in computer architecture, while necessary, is not a task
that can be carried out in isolation. Practitioners must associate with their peers in software
engineering and systems engineering to define platforms that contextualize the individual
components and bring them to the scrutiny of audiences external to the field. We have
argued that this contextualization, which we name the outer question, cannot be carried out
by one architect, or even a small group. Individual, human creators have separate personal
interests and fields of expertise; the diversity of expertise needed to create entire computing
platforms exceeds the management and organizational capacity of a small research group.

Historically, innovation in computer architecture occurred first in public organizations
funded by governmental and corporate organizations. As computers became commercial
products and their audiences widened, innovation was then carried out in partnership be-
tween academic and corporate organizations, the latter being responsible for carrying the
financial and human effort necessary for manufacturing and commercialization. This tran-
sition occurred across all uses of computers, from small embedded systems to datacenters.
Meanwhile, the definition of general-purpose computing platforms was instrumental to power
the IT industry, in particular the industry of software engineering, and decouple the pro-
duction of software from the production of hardware.

Since the turn of the 21st century, powerful market forces are at play to redefine the
place of general-purpose computers. Before the last decade, users could define the function
of their computing devices separately from form. They could do so by acquiring software,
but also by writing their own software, separately from the acquisition of the platform. In
contrast, the last decade has then seen the advent of smart terminals and entertainment
platforms, whose form and function are bundled by the manufacturer and not separable
by the user. These devices have displaced commodity general-purpose platforms. They
progressively erase the incentive to educate non-technical audiences about the benefits of
carrying out their own innovation in the software domain.

On December 27th, 2011, famous technology activist Cory Doctorow addressed the 28th
Chaos Communication Congress in Berlin with his keynote titled The coming war on general
computation: the copyright war was just the beginning. He summarized the essence of his
message thus:

243

244 CHAPTER 16. EPILOGUE ON THE OUTER QUESTION

The problem is twofold: first, there is no known general-purpose computer that
can execute all the programs we can think of except the naughty ones; second,
general-purpose computers have replaced every other device in our world. There
are no airplanes, only computers that fly. There are no cars, only computers we
sit in. [...] Consequently anything you do to “secure” anything with a computer
in it ends up undermining the capabilities and security of every other corner of
modern human society.

And general purpose computers can cause harm—whether it’s printing out AR15
components, causing mid-air collisions, or snarling traffic. So the number of
parties with legitimate grievances against computers are going to continue to
multiply, as will the cries to regulate PCs.

The primary regulatory impulse is [...] to create computers that run programs
that users can’t inspect or terminate, that run without users’ consent or knowl-
edge, and that run even when users don’t want them to.

The upshot: a world [...] where everything we do to make things better only
makes it worse, where the tools of liberation become tools of oppression.

Our duty and challenge is to devise systems for mitigating the harm of general
purpose computing without recourse to spyware, first to keep ourselves safe, and
second to keep computers safe from the regulatory impulse.

On the one hand, we could simply acknowledge the evolution denounced by Doctorow
as a natural effect of a free market where consumers have decided, through their purchasing
power, their preference for pre-programmed functions and corporate control over features.
On the other hand, we could worry about an opportunity loss, that of educating a larger
number of individuals to the power of generality. This loss is especially relevant today. The
diversity of types of basic building blocks found in commercial computing systems since the
late 1980’s has barely changed: beyond pipelines and registers (1950’s), caches (1960’s),
virtual memory (1970’s), and RISC and programmable logic (1980’s), later computers have
merely become different combinations of these blocks, with upgraded semantics (e.g. out-of-
order execution); meanwhile, the entire industry is currently facing fundamental technology
challenges. It seems to us that a large diversity of creative approaches by individuals em-
powered to innovate will be needed to overcome these challenges. Also, to guarantee equal
opportunity and chance in the dynamics of innovation, it seems to us unwise to rely on pri-
vate corporations and let them capture innovative types behind closed doors. An alternate
route seems tractable today, because the advent of mass-manufactured generic FPGA sub-
strates makes it affordable for individuals and small research groups to innovate in computer
architecture and demonstrate their inventions at a low cost.

These considerations are, of course, an essentially political comment about the human
dynamics around computing science. Yet we must acknowledge these dynamics to make
informed technological and scientific choices around efforts towards innovation.

Coming back to hardware microthreading, the “economically correct” route forward in
the current landscape would be to partner with a corporate entity, select or devise an appli-
cation domain and shape a product to be marketed in that domain. A prerequisite to that
route, however, is often to let the corporation own the invention and prevent third parties
from reproducing and altering its design. Even if such exclusive licensing is not demanded,
investing effort towards a product captures the innovative energy in the direction of the spe-
cific application domain that the product is targeting. The alternative is transparency and

245

openness, i.e. working towards maximum exposure and opening the opportunity for multi-
ple organizations to devise derived platforms independently. The trade-off is about wealth
and fame: investing in a product incurs either short-term wealth and fame or short-term
destitution, whereas investing in a campaign for transparency incurs neither.

We have answered in our dissertation the outer question around hardware microthread-
ing by exploring the route towards transparency; our answer is to be found in the journey,
not the end result. On this path, we have built a programming environment upon the C
language and the Unix operating system, which are both technologies currently in shared
control of communities from both for-profit and non-profit organizations. We have moti-
vated this choice by showing that the perspective of these communities can reveal early
shortcomings in the innovation, which a product-based approach would only reveal after a
larger investment. In our design choices, which we exposed, we prioritized generality over ef-
ficiency or specialization to a specific domain. We have publicly detailed the inner workings
of the resulting platform, so that third parties can reproduce our findings and develop their
own software tools anew if so desired. We have illustrated the applicability of our technology
by showing that it was used successfully by third parties, in particular to show the higher
throughput per unit of area and time of the proposed design compared to contemporary
hardware. The output of our work, reported on in this book, is mere information: techni-
cal and scientific insight, plus general-purpose operating software and programming tools
to equip an implementation of hardware microthreading compatible with the interface pre-
sented in chapter 4. Our contributions, including this book itself, can be further reproduced
and studied free of charge without the explicit agreement of their author.

Through the looking glass

As parting words, we recognize that the history of computing has not recently seen instances
where innovations in computer architecture were brought to the hands of the general public
without heavy involvement and investment from large corporations. It may well be that the
various steps we identified in chapter 15 will be a show stopper for the specific research direc-
tion considered, because the proposed concepts diverge too much from industry-established
standards. Or, more likely, some architectural concepts will be partially retrofitted by ex-
isting industry leaders in legacy designs, without further consideration for our proposed
platform. Meanwhile, we cannot ignore either the democratization of architecture research
enabled by FPGA technology, or the realizability of cheap platforms for education like
Raspberry Pi1. One can only barely imagine the potential of outsourcing the various issues
identified previously to communities of hobbyists and younger/amateur scientists equipped
with low-cost FPGA boards, produced and distributed in the manner of Raspberry Pi, and
exchanging design directions publicly with the help of the Internet. This conjunction of
opportunities is recent, and may well be the vehicle sufficient to overcome the traditional
threshold to innovation in architecture research.

1http://www.raspberrypi.org/: this UK-based, non-profit foundation, whose primarily interest is ed-
ucation, brought a fully-programmable, state-of-the-art general-purpose computer equipped uniquely with
F/OSS to the general public for the price of a couple meals (US$25). Their first production batch was sold
out before the first shipping, and their pre-sales at the start of 2012 have so far exceed prior estimates.

http://www.raspberrypi.org/

Part IV

Appendices

Appendix A

Information sources for the hardware
interface

The description work in chapters 3 and 4 was bootrapped by a preliminary analysis of what
information was already available. The following is an exhaustive list of the sources related
to the hardware design at that point (late 2008):

‹i› a library of 24 short example programs written in assembly source, listed in table A.1;
‹ii› 17 academic publications containing descriptions of the hardware architecture, listed

in table A.2;
‹iii› an internal (unpublished) technical report describing the machine instructions that

control multithreading [LB08];
‹iv› program source code for “mtsim,” a functional emulator of an abstract multi-core

system using the proposed architecture, using assembly source as input;
‹v› program source code for “mtaxpasm,” a translator from assembly source to machine

code suitable for use with mtsim,
‹vi› program source code for “MGSim,” a cycle-accurate component-level simulation of a

multi-core system using the proposed architecture, using binary machine code as input;
‹vii› program source code for a modified version of the GNU assembler and linker1, which

superseded mtaxpasm to target MGSim;
‹viii› the author of MGSim, the author of mtsim, and the other research staff in charge of

the architecture design.

When faced with conflicting information, we investigated the MGSim machine emulator
at that time, advertised as the “reference implementation,” to resolve the inconsistencies.
This ensures our description is consistent with [Lan07, Lan1x]. Otherwise, the information
in sections 3.2 to 3.4 was obtained from sources ‹ii›, ‹vi› and ‹viii›. The information in
chapter 4 was obtained from sources ‹i› to ‹iii› and ‹vi› to ‹viii›.

1http://www.gnu.org/software/binutils/

249

http://www.gnu.org/software/binutils/

250 APPENDIX A. INFORMATION SOURCES FOR THE HARDWARE INTERFACE

Program Description
fft/ fft_seq_u unoptimized sequential 1D FFT kernel
fft/ fft_seq_o “ hand-optimized
fft/ fft_mt_u “ unoptimized, multithreaded
fft/ fft_mt_o “ hand-optimized
fibo/ fibo multithreaded program that computes the Nth element of the Fi-

bonacci sequence
livermore/ l1_hydro multithreaded hydro fragment from the Livermore suite [McM86] (in-

tegers only)
livermore/ l2_iccq multithreaded incomplete cholesky conjugate gradient (integers only)
livermore/ l3_innerprod multithreaded vector-vector product (integers only)
livermore/
l4_bandedlineareq

multithreaded banded linear equations kernel (integers only)

livermore/ l5_tridiagelim multithreaded tri-diagonal elimination below diagonal (integers only)
livermore/ l6_genlinreceq multithreaded general linear recurrence equations (integers only)
matmul/ matmul0 square matrix-matrix multiplication, integers only, sequential
matmul/ matmul1 “ multithreaded, one level of threads
matmul/ matmul2 “ multithreaded, two levels of threads
matmul/ matmul3 “ multithreaded, three levels of threads
sine/ sine_seq_u unoptimized, sequential sine function using 9-level Taylor expansion
sine/ sine_seq_o “ hand-optimized
sine/ sine_mt_u “ unoptimized, multithreaded
sine/ sine_mt_o “ hand-optimized
sac/ sac_flat sequential test program containing an heterogeneous floating-point ar-

ray computation, hand-compiled from a higher-level functional lan-
guage

sac/ sac_nested_local “ multithreaded, using one core only
sac/ sac_nested_group “ using multiple cores

Table A.1: Example programs from the architecture test suite, December 2008

Key Title
[BJM96] Dynamic scheduling in RISC architectures.
[JL00] Micro-threading: a new approach to future RISC.
[Jes01] Implementing an efficient vector instruction set in a chip multi-processor using micro-

threaded pipelines.
[LJ02] Performance of a micro-threaded pipeline.
[Jes03] Multi-threaded microprocessors – evolution or revolution.
[Jes04] Scalable instruction-level parallelism.
[Jes05] Microgrids – the exploitation of massive on-chip concurrency.
[BJ05] The challenges of massive on-chip concurrency.
[BHJ06b] Instruction level parallelism through mi- crothreading – scalable approach to chip mul-

tiprocessors.
[BBG+06] A microthreaded architecture and its compiler.
[Jes06b] Microthreading, a model for distributed instruction-level concurrency.
[BJK07] Strategies for compiling µTC to novel chip multiprocessors.
[ZJ07] On-Chip COMA Cache-Coherence Protocol for Microgrids of Microthreaded Cores.
[Lan07] Developing a Reference Implementation for a Microgrid of Microthreaded Micropro-

cessors.
[Jes08a] Operating systems in silicon and the dynamic management of resources in many-core

chips.
[Jes08b] A model for the design and programming of multi-cores.
[BBG+08] A general model of concurrency and its implementation as many-core dynamic RISC

processors.

Table A.2: Academic publications explaining the architecture, December 2008

Appendix B

Optimal control word size analysis

Number of
instructions per
control word

Size of control
word

Minimum I-cache
line size
(non-aligned)

Minimum I-cache
line size (aligned)

Unused bytes in
line

1 2 bits 5 bytes 8 bytes 3
2 4 bits 9 bytes 16 bytes 7
3 6 bits 13 bytes 16 bytes 3
4 8 bits 17 bytes 32 bytes 15
5 10 bits 22 bytes 32 bytes 10
6 12 bits 26 bytes 32 bytes 6
7 14 bits 30 bytes 32 bytes 2
8 16 bits 34 bytes 64 bytes 30
9 18 bits 39 bytes 64 bytes 25
10 20 bits 43 bytes 64 bytes 21
11 22 bits 47 bytes 64 bytes 17
12 24 bits 51 bytes 64 bytes 13
13 26 bits 56 bytes 64 bytes 8
14 28 bits 60 bytes 64 bytes 4
15 30 bits 64 bytes 64 bytes 0

Table B.1: Impact of control bits on I-cache line utilization.

Assuming 32-bit instruction formats.

Instruction width Number of instructions per
control word

Minimum I-cache line size
(aligned)

8 bits 1 2 bytes
8 bits 3 4 bytes
8 bits 6 8 bytes
8 bits 25 32 bytes
8 bits 51 64 bytes
8 bits 102 128 bytes
16 bits 7 16 bytes
16 bits 14 32 bytes
16 bits 455 1024 bytes
24 bits 1 4 bytes
24 bits 315 1024 bytes
32 bits 15 64 bytes
48 bits 5 32 bytes
64 bits 31 256 bytes
64 bits 62 512 bytes

Table B.2: Number of instructions per control word that maximize I-line utilization.

Parameters suitable for minimal I-cache line sizes lower than 1KiB.

251

Appendix C

Running example with machine code

This appendix illustrates one of the possible machine interfaces described in chapter 4 by
looking at a working example.

The first part of the example is given in table C.1. We consider the structure of the
memory image first. The first bits are control bits (sections 3.2.1 and 4.4 and Appendix B).
These are defined 32 at a time, in groups of 2 bits per following instruction. In this example,
the hexadecimal value 0x00030400 can be decomposed from LSB to MSB as 0, 0, 0, 0, 0, 1,
0, 0, 3 followed by 7 groups with value 0. The first value is ignored as it refers to the control
word itself; the next 8 values (0, 0, 0, 0, 1, 0, 0, 3) are the control bits for the 8 instructions
that follow, with values 0 for all instructions except “setlimit” and “mov” which have values 1
and 3, respectively. The value 1 indicates to the pipeline’s fetch unit to switch to a different
thread, whereas the value 2 indicates to terminate the thread execution; both values can be
combined using a binary OR. Since the “mov” instruction terminates the thread, there are
no more instructions afterwards in this thread program. The memory image thus contains

Offset Machine code (hex) Textual representation
0x00 00 04 03 00 (control 0x00030400)
0x04 00 00 60 08 allocate $3
0x08 00 14 e0 47 mov 0, $0
0x0c 01 34 e0 47 mov 1, $1
0x10 22 51 40 40 subl $2, 2, $2
0x14 5f 00 62 04 setlimit $3, $2
0x18 00 00 60 18 setregs $3, 0, 0, 0, 0
0x1c 0b 00 60 10 cred $3, 0x48
0x20 1f 04 e3 47 mov $3, $31
0x24 1f 04 ff 47 (padding)
0x28 00 00 fe 2f (padding)
0x2c 1f 04 ff 47 (padding)
0x30 00 00 fe 2f (padding)
0x34 1f 04 ff 47 (padding)
0x38 00 00 fe 2f (padding)
0x3c 1f 04 ff 47 (padding)

Table C.1: Memory image for the program “fibo”, late 2008

253

254 APPENDIX C. RUNNING EXAMPLE WITH MACHINE CODE

padding at this point to complete the length of the cache line: the fetch unit loads entire
cache lines at a time (64 bytes here) in the instruction cache.

We then consider the semantics of the memory image. The system initially starts a
single thread. The initial program counter is configurable externally to the system (either
as a hardware parameter or a pointer in a memory image), and without further specification
it default to 0. This seems inconsistent with the program image, because the data at address
0 is the control word. In fact, the fetch unit always automatically skips the first 4 bytes of
a cache line when fetching instructions. This implies that the first instruction is really at
address 4, in this case “allocate.” Here we may wonder why no synchronizer configuration
is present here before the start of the program, as required by section 4.3.3. In fact, there
is a special exception for the initial thread: the hardware does not require this synchronizer
specification for the first thread and always allocates 31 local (private) synchronizers.

As per section 4.3.1, the “allocate” instruction is the first step of a family creation, and
reserves a yet unused bulk creation context from a dedicated memory component on chip.
It then stores the address of this context into the target operand of the instruction—here
the synchronizer with the name “$3.”

The next two “mov” instructions load the constants 0 and 1 in synchronizers $0 and $1,
respectively.

The next “subl” instruction substracts 2 from the value of synchronizer $2, and stores
the result into $2. This seems nonsensical, since synchronizer $2 was not set until this point.
This is actually a feature of the software emulation platform MGSim: individual processor
synchronizers can be set to predefined values before the system is activated. This is a crude
way to provide external input to the program1. All synchronizers that are not predefined
this way are initially in the “empty” state. We can confirm this by running the program
without input: execution stops at the “subl” instruction, waiting for input which is never
defined. If the synchronizer is predefined, execution flows past the instruction.

The next instruction “setlimit” configures (section 4.3.2.3) the limit parameter of the
family context reserved by “allocate,” using the result of “subl.” However, we know that this
instruction is also marked with the special control bits that indicate the fetch unit to switch
to a different thread. This seems nonsensical, as we have seen that initially only one thread
is created. Actually, the fetch unit has a special case for the situation where only one thread
is active: in that case, the “switch” annotation is ignored and the next instruction is fetched
from the same thread. From this point it may become unclear why the “switch” annotation
was specified at all. From the same sources we learn that this was done for consistency:
the switch annotation should placed on all instructions that may suspend a thread, to ensure
that the next slots in the pipeline are always occupied with work if there are other threads
active.

The next instruction “setregs” configures the offset, in the creating thread’s visible win-
dow of synchronizers, of the channel endpoints with the created family. Here we recognize
an interface with “hanging” synchronizers (section 4.3.3.3). Here all offsets are set to 0,
which means that the first synchronizer name used to communicate will be “$0” for each
channel. The endpoint synchronizer names are chosen contiguously from the first. This
instruction clarifies the role of the two preceding “mov” instructions: by placing values in
synchronizers “$0” and “$1,” they have prepopulated the input side of the communication
with the created family. Interestingly, the instruction only specifies one offset for each of the

1While this is clearly an unrealistic feature for a hardware implementation, it is a simple and convenient
system that automates execution of the same program for multiple input values.

255

channel categories (integer “global,” integer “shared,” floating-point “global,” floating-point
“shared”); meanwhile, we know from section 4.3.3.3 that the architecture connects the out-
going “shared” channels of the last thread to the parent thread. In fact, the 2nd and 4th
parameter to “setregs” specify both the endpoint of the outgoing value to the first thread,
and the incoming value from the last thread. Each of these offset specifications may be
eventually ignored by the hardware if no channel of the corresponding type is defined.

The next instruction “cred” creates the family of threads using the family context iden-
tified by its 1st operand (here $3, set to the result of “allocate”), and the program counter
identified by its 2nd operand (here 0x48). This is a “fused creation” (section 4.3.1.2): the
execution of “cred” further binds the 1st operand to a future termination value for the cre-
ated family. This means that the named synchronizer (here $3) is set to the “empty” state,
with the contract that the hardware will change it to the “full” state when all threads in the
family terminate. This implies that any further instruction that uses the same synchronizer
as input operand will cause the thread to suspend until the family terminates.

Note that both “crei” and “cred” exist; the former accepts a synchronizer operand and
an offset for the program counter (“create Indirect”), while the latter accepts an immediate
value (“create Direct”). They have otherwise the same semantics, and are collectively named
“create.”

The final instruction “mov” reads from the named synchronizer $3; as seen above this
causes the thread to wait until the created family terminates. As per section 4.3.1.2, with
a fused creation style, the context reserved by “allocate” is automatically released upon
termination and thus made available for subsequent allocations by the same thread or other
threads on the processor.

Notwithstanding the question of the validity of address 0x48 in the “cred” instruction,
discussed below, we can summarize the following:

• upon system start-up, execution starts with 1 thread using 31 local synchronizers and
a configurable initial program counter;

• the synchronizer configuration is omitted for the program of the initial thread;
• the fetch stage skips the first 4 bytes of each cache line;
• control words are organized in groups of 2 bits, one per instruction; value 2 indicates

“end thread”, value 1 indicates “switch;”, and the binary OR of both values is possible;
• switch does not really occur in the fetch unit if there is only 1 thread active;
• initially all synchronizers have the state “empty,” except in MGSim where they can be

predefined to input values by the user;
• programmers should annotate all instructions that may suspend a thread with the

“switch” control bits;
• “cred” and “crei” cause the actual creation of threads for a family; their output in the

creating thread is a future on the family’s termination, and the target synchronizer
operand of both instructions is “tied up” to the execution of the family until the family
terminates (and thus cannot be reused until then).

• “allocate” reserves a family context from a finite-size hardware data structure, used
subsequently by “cred” and “crei” and released for further reuses when the family
terminates;

• “setlimit” configures the limit parameter for the named family identified by its first
input operand, using the value of the 2nd input operand; other examples show that
the instructions “setstart,” “setstep” and “setblock” also exist which configure resp. the
start, step and “block” parameters for the family (cf. sections 4.3.2.2 and 4.3.2.3);

256 APPENDIX C. RUNNING EXAMPLE WITH MACHINE CODE

Offset Machine code (hex) Textual representation
0x40 d0 00 00 00 (control 0x000000d0)
0x44 40 00 00 00 (reg. spec. 0x00000040)
0x48 01 00 43 40 addl $2, $3, $1
0x4c 00 04 e3 47 mov $3, $0
0x50 1f 04 ff 47 (padding)
0x54 00 00 fe 2f (padding)
0x58 1f 04 ff 47 (padding)
0x5c 00 00 fe 2f (padding)
0x60 1f 04 ff 47 (padding)
0x64 00 00 fe 2f (padding)
0x68 1f 04 ff 47 (padding)
0x6c 00 00 fe 2f (padding)
0x70 1f 04 ff 47 (padding)
0x74 00 00 fe 2f (padding)
0x78 1f 04 ff 47 (padding)
0x7c 00 00 fe 2f (padding)

Table C.2: Continuation of table C.1

• “setregs” configures the channel endpoints in the creating thread for the named family
identified by its input operand, using 4 constant values that denote offsets in the
thread’s virtual synchronizer window. The 4 offsets specify the integer “global,” integer
“shared,” floating-point “global” and floating-point “shared,” in this order; the 2nd and
4th offsets are used both for the outgoing endpoint to the first thread and the incoming
endpoint from the last thread.

We can then proceed with the study of the rest of the memory image of the example,
listed in table C.2. As expected, there is data in memory at the address 0x48, specified by
the “cred” instruction at address 0x18. As previously, we can decompose the structure of
this cache line first. The control bits indicate values 0, 0, 1, 3, followed by 12 2-bit blocks
with value 0. The first value corresponds to the control word itself, which leaves values
0, 1, 3 for the next instructions in the cache line. Value 1 (switch) applies to the “addl”
instruction, whereas 3 (end thread) applies to “mov.” This indicates that “mov” is the last
instruction; the rest of the cache line is filled with padding.

As to the semantics, the “cred” instruction indicates that the start of the thread program
lies at address 0x48. The synchronizer window configuration immediately precedes, here at
address 0x44. This value should be decomposed first in blocks of 16 bits from LSB to MSB,
here 0x0040 and 0x0000. The 1st block corresponds to integer synchronizers, the 2nd to
floating-point synchronizer. Each block is then further decomposed from LSB to MSB in
groups of three 5-bit values, here thus 0, 2, 0 for integers and 0, 0, 0 for floats. In each block,
the first value indicates the number of global channels, the 2nd value indicates the number of
shared channels, and the 3rd value indicates the number of local (private) synchronizers. In
this example the configuration defines only 2 shared channels, i.e. 4 synchronizer endpoints
as per section 4.3.3.3 (two incoming, two outgoing).

The first instruction in the thread program is then “addl,” with inputs $2 and $3 and
output $1. As this interface maps windows in the order G-S-L-D (section 4.3.3.4), the
outging channel endpoints are mapped before the incoming endpoints. Since there are no

257

other synchronizers defined in this example, the names $0 and $1 thus point to the outgoing
channels, and $2 and $3 point to the incoming channels. Therefore, the “addl” instruction
can be understood to read from each incoming channel, and produce its output on the 2nd
outgoing channel.

The subsequent “mov” instruction then propagates the value from the 2nd incoming
channel to the 1st outgoing channel, and the thread then terminates.

Finally, we need to look again at the previous fragment from table C.1 to understand
where the endpoints of the first and last links are connected (the outgoing part of the
incoming channels of the first thread in the family, and the incoming part of the outgoing
channels of the last thread). As described above, they are specified by “allocate,” in this case
all endpoints start from the first local synchronizer, here $0. Therefore, the two endpoints
of the first shared channel are mapped onto synchronizer $0 of the creating thread, and the
2nd shared channel endpoints are mapped onto $1. It is relevant to observe at this point
that these two synchronizers are initialized to 0 and 1 by the creating thread.

From a slightly higher level perspective, we can describe the expected behavior of this
program as follows: the program takes an input value, let us call it N . It then creates a
family of N −2 threads linked using two daisy-chains of synchronous channels; and initializes
the two inputs of the first thread to 0 an 1, respectively. Finally, it waits on termination
of the family. Meanwhile, each created thread sums its two inputs into the 2nd output
channel, and propagates the 2nd input to the 1st output channel. Inductively, the values
produced by the last threads are the Nth and N −1th values of the Fibonacci sequence. It is
then possible to observe externally the final state of synchronizers $0 and $1 in the creating
thread after it terminates to obtain the program’s result.

We can summarize further:

• the first intruction of a thread program cannot be placed directly after the control
word, so as to leave room for the synchronizer configuration information which must
immediately precede;

• the synchronizer configuration word, placed immediately before the first thread pro-
gram instruction, is specified as two 16-bit blocks containing 3 5-bit values each, defin-
ing the number of global, shared, local synchronizers for integers and floats, in this
order;

We can see an example of synchronizer sharing in fig. C.1. This state was obtained
after running a thread program with synchronizer configuration 4, 6, 9, 0, 0, 0, which in
turn created a family of 3 threads whose synchronizer configuration was 2, 3, 4, 0, 0, 0.
The “setregs” operation indicated offsets 1, 5, 0, 0 for the channel endpoints in the creating
thread. The shaded areas indicate the resulting mapping of physical synchronizers to logical
names in the visible synchronizer windows of each thread; there are 6 unused synchronizer
names in the creating thread, and 19 unused synchronizer names in each of the 3 threads in
the created family.

In contrast, if the implementation was using separate synchronizers (section 4.3.3.3), as
opposed to “hanging” in the previous case, the same configuration would yield the pattern
illustrated in fig. C.2.

258 APPENDIX C. RUNNING EXAMPLE WITH MACHINE CODE

G0 G1 G2 G3 S0 S1 S2 S3 S4 S5 L0 L1 L2 L3 L4 L5 L6 L7 L8 D0 D1 D2 D3 D4 D5 Z

0 5 10 15 20 25 30

...... ...

(not mapped)

G0 G1 S0 S1 S2 L0 L1 L2 L3 ...D0 D1 D2 Z

0 5 31(not mapped)

ISA register names

visible in thread 0

Synchronizing register file (hardware)

ISA register names visible in parent thread

G0 G1 S0 S1 S2 L0 L1 L2 L3 ...D0 D1 D2 Z

0 5 31(not mapped)

... in thread 1

G0 G1 S0 S1 S2 L0 L1 L2 L3 ...D0 D1 D2 Z

0 5 31(not mapped)

... in thread 2

Figure C.1: Observed synchronizer sharing between a creating thread and a family of 3
threads.

G0 G1 G2 G3 S0 S1 S2 S3 S4 S5L0 L1 L2 L3 L4 L5 L6 L7 L8 D0 D1 D2 D3 D4 D5 Z

0 5 10 15 20 25 30

......

(not mapped)

ISA register names

visible in thread 0

Synchronizing register file (hardware)

ISA register names visible in parent thread

G0 G1 S0 S1 S2L0 L1 L2 L3 ...D0 D1 D2 Z

0 5 31(not mapped)

... in thread 1

... in thread 2

G0 G1 S0 S1 S2L0 L1 L2 L3 ...D0 D1 D2 Z

0 5 31(not mapped)

G0 G1 S0 S1 S2L0 L1 L2 L3 ...D0 D1 D2 Z

0 5 31(not mapped)

...

source
globals

final
shareds

source
shareds

Figure C.2: Observed register sharing between a creating thread and a family of 3 threads.

Appendix D

Assembly instruction formats and
machine encoding

Mnemonic Description Sync. /
Async.

Asynchronous
completion condition

crei,
cred

Start bulk creation of logical threads Async. Bulk creation has
started.

sync Request bulk synchronization. Async. All bulk created
threads have
terminated.

create Start bulk creation and request bulk
synchronization.

Async. All bulk created
threads have
terminated◇.

creba,
creba/s,
crebas

Issue a combined allocation, configuration and
creation request with parameters stored in
memory at the specified location.

Async. Bulk creation has
started†.

crebi,
crebi/s,
crebis

Issue a combined allocation, configuration and
creation request with parameters stored in
memory, looked up by index in a table in memory
starting at an address stored in a predefined
ancillary system register on the local core.

Async. Bulk creation has
started†.

break Stop creating new logical threads in the current
bulk creation, but let existing logical threads to
completion.

Sync. N/A

◇ The “create” instruction on UTLEON3 implements fused creation as described in section 4.3.1.2.
† Only the “*s” variants acknowledge bulk creation. “creba” and “crebi” do not output a future.

Table D.1: Description of the family control instructions.

259

260 APPENDIX D. MACHINE INSTRUCTIONS

Mnemonic Description Sync. /
Async.

Asynchronous
completion condition

putg, fputg,
puts, fputs

Write a remote register/synchronizer. Async. None: fully
asynchronous.

getg, fgetg,
gets, fgets

Read a remote register/synchronizer. Async. Remote value
received‡.

‡ The “get” instructions to not suspend if the remote synchronizer is not full (no dataflow synchronization
across cores); instead an undefined value is returned.

Table D.2: Description of the register-to-register communication instructions.

Mnemonic Description Sync. /
Async.

Asynchronous
completion condition

allocate, allocates,
allocate/s, allocatex,
allocate/x

Allocate a bulk creation context. Async. Remote context has
been allocated⋆.

release Release a previously allocated
context

Async. None: fully
asynchronous.

setstart, setlimit,
setstep, setblock

Configure the bulk creation
parameters after allocation and prior
to creation.

Async. None: fully
asynchronous.

⋆ The “*s” and “*x” variants wait until a context becomes available. The base variant returns a special
value to signal if no context was available.

Table D.3: Description of the bulk context management instructions.

Mnemonic Description
ldbp Load base pointer: output the base TLS address (cf. chapter 9).
ldfp Load end pointer: output one address past the end of the TLS space.
gettid Output the local address of the thread context (within its core).
getfid Output the local address of the bulk synchronizer (within its core).
getpid Output the address of the current placement (cf. chapter 11).
getcid Output the address of the local core.
getasr Read the content of an ancillary system register on the local core.

Table D.4: Description of miscellaneous instructions.
These instructions retrieve local state relative to the logical thread that issues them.

Assembly format Encoding

Pattern Overlaps/Extends op1 rd op3 rs1 i opµT
ASIµT rs2

imm9

allocate %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0x1 - 00000
create %rs2, %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0x2 - rs2
gettid %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0x3 - 00000
getfid %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0x4 - 00000

launch %rs2 wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0x1 - 00000
setstart %rs1, %rs2 wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0x2 - rs2
setstart %rs1, imm9 wrasr %rs1, %asr20 10 0x14 110000 rs1 1 0x2 imm9
setlimit %rs1, %rs2 wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0x3 - rs2
setlimit %rs1, imm9 wrasr %rs1, %asr20 10 0x14 110000 rs1 1 0x3 imm9
setstep %rs1, %rs2 wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0x4 - rs2
setstep %rs1, imm9 wrasr %rs1, %asr20 10 0x14 110000 rs1 1 0x4 imm9
setblock %rs1, %rs2 wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0x5 - rs2
setblock %rs1, imm9 wrasr %rs1, %asr20 10 0x14 110000 rs1 1 0x5 imm9
setthread %rs1, %rs2 wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0x6 - rs2
setthread %rs1, imm9 wrasr %rs1, %asr20 10 0x14 110000 rs1 1 0x6 imm9
break wrasr %g0, %asr20 10 0x14 110000 00000 0 0xA - 00000

Table D.5: MT instruction set extensions implemented in UTLEON3.

Non-prefixed values are in base 2, and values prefixed with “0x” in base 16.

261

Assembly format Encoding

Pattern Overlaps/Extends op1 rd op3 rs1 i opµT
ASIµT rs2

imm9

allocate %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0x1 - 00000
allocate %rs2, %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0x1 - rs2
allocate imm9, %rd rdasr %asr20, %rd 10 rd 101000 0x14 1 0x1 imm9
(reserved UTLEON3) rdasr %asr20, %rd 10 rd 101000 0x14 0 0x2 - rs2
gettid %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0x3 - 00000
getfid %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0x4 - 00000
getpid %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0x5 - 00000
getcid %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0x6 - 00000
crei %rs2, %rs1 rdasr %asr20, %rs1 10 rs1 101000 0x14 0 0x7 - rs2
cred imm9, %rs1 rdasr %asr20, %rs1 10 rs1 101000 0x14 1 0x7 imm9
sync %rs2, %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0x8 - rs2
allocates %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0x9 - 00000
allocates %rs2, %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0x9 - rs2
allocates imm9, %rd rdasr %asr20, %rd 10 rd 101000 0x14 1 0x9 imm9
allocatex %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0xA - 00000
allocatex %rs2, %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0xA - rs2
allocatex imm9, %rd rdasr %asr20, %rd 10 rd 101000 0x14 1 0xA imm9
gets %rs2, N, %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0xB N rs2
getg %rs2, N, %rd rdasr %asr20, %rd 10 rd 101000 0x14 0 0xC N rs2
fgets %rs2, N, %fd rdasr %asr20, %fd 10 fd 101000 0x14 0 0xD N rs2
fgetg %rs2, N, %fd rdasr %asr20, %fd 10 fd 101000 0x14 0 0xE N rs2

ldbp %rd rdasr %asr19, %rd 10 rd 101000 0x13 0 0x1 - 00000
ldfp %rd rdasr %asr19, %rd 10 rd 101000 0x13 0 0x2 - 00000
crebas %rs2, %rs1 rdasr %asr19, %rs1 10 rs1 101000 0x13 0 0x3 - rs2
crebas imm9, %rs1 rdasr %asr19, %rs1 10 rs1 101000 0x13 1 0x3 imm9
crebis %rs2, %rs1 rdasr %asr19, %rs1 10 rs1 101000 0x13 0 0x4 - rs2
crebis imm9, %rs1 rdasr %asr19, %rs1 10 rs1 101000 0x13 1 0x4 imm9

(reserved UTLEON3) wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0x1 - 00000
setstart %rs1, %rs2 wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0x2 - rs2
setstart %rs1, imm9 wrasr %rs1, %asr20 10 0x14 110000 rs1 1 0x2 imm9
setlimit %rs1, %rs2 wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0x3 - rs2
setlimit %rs1, imm9 wrasr %rs1, %asr20 10 0x14 110000 rs1 1 0x3 imm9
setstep %rs1, %rs2 wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0x4 - rs2
setstep %rs1, imm9 wrasr %rs1, %asr20 10 0x14 110000 rs1 1 0x4 imm9
setblock %rs1, %rs2 wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0x5 - rs2
setblock %rs1, imm9 wrasr %rs1, %asr20 10 0x14 110000 rs1 1 0x5 imm9
(reserved UTLEON3) wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0x6 - rs2
(reserved UTLEON3) wrasr %rs1, %asr20 10 0x14 110000 rs1 1 0x6 imm9
release %rs1 wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0x9 - 00000
break wrasr %g0, %asr20 10 0x14 110000 00000 0 0xA - 00000
puts %rs2, %rs1, N wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0xB N rs2
putg %rs2, %rs1, N wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0xC N rs2
fputg %fs2, %rs1, N wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0xD N fs2
fputs %fs2, %rs1, N wrasr %rs1, %asr20 10 0x14 110000 rs1 0 0xE N fs2

creba %rs1, %rs2 wrasr %rs1, %asr19 10 0x13 110000 rs1 0 0x3 - rs2
creba %rs1, imm9 wrasr %rs1, %asr19 10 0x13 110000 rs1 0 0x3 imm9
crebi %rs1, %rs2 wrasr %rs1, %asr19 10 0x13 110000 rs1 0 0x4 - rs2
crebi %rs1, imm9 wrasr %rs1, %asr19 10 0x13 110000 rs1 0 0x4 imm9
print %rs1, %rs2 wrasr %rs1, %asr19 10 0x13 110000 rs1 0 0xF - rs2
print %rs1, imm9 wrasr %rs1, %asr19 10 0x13 110000 rs1 1 0xF imm9

Table D.6: General MT extensions for a SPARC v8 instruction set.

Non-prefixed values are in base 2, and values prefixed with “0x” in base 16.

262 APPENDIX D. MACHINE INSTRUCTIONS

bits bits bits bits bit bits bits
Assembly pattern 26-31 Format 21-25 16-20 13-15 12 5-11 0-4

ldbp Rc 0x01 Op 11111 11111 0 0 0000000 Rc
ldfp Rc 0x01 Op 11111 11111 0 0 0000001 Rc
gettid Rc 0x01 Op 11111 11111 0 0 0000010 Rc
getfid Rc 0x01 Op 11111 11111 0 0 0000011 Rc
getpid Rc 0x01 Op 11111 11111 0 0 0000100 Rc
getcid Rc 0x01 Op 11111 11111 0 0 0000101 Rc
getasr imm8, Rc 0x01 Op 11111 imm8 1 0000110 Rc
getapr imm8, Rc 0x01 Op 11111 imm8 1 0000111 Rc

break 0x01 Op 11111 11111 0 0 0001000 11111

(future local) 0x01 Op x x x x 000xxxx x

setstart Rf, Rv 0x01 Op Rf Rv 0 0 0100000 11111
setstart Rf, imm8 0x01 Op Rf imm8 1 0100000 11111
setlimit Rf, Rv 0x01 Op Rf Rv 0 0 0100001 11111
setlimit Rf, imm8 0x01 Op Rf imm8 1 0100001 11111
setstep Rf, Rv 0x01 Op Rf Rv 0 0 0100010 11111
setstep Rf, imm8 0x01 Op Rf imm8 1 0100010 11111
setblock Rf, Rv 0x01 Op Rf Rv 0 0 0100011 11111
setblock Rf, imm8 0x01 Op Rf imm8 1 0100011 11111
putg Rv, Rf, imm5 0x01 Op Rf Rv 0 0 0100100 imm5
putg imm8, Rf, imm5 0x01 Op Rf imm8 1 0100100 imm5
fputg Fv, Rf, imm5 0x05 FP Op Rf Fv 0 0100100 imm5
puts Rv, Rf, imm5 0x01 Op Rf Rv 0 0 0100101 imm5
puts imm8, Rf, imm5 0x01 Op Rf imm8 1 0100101 imm5
fputs Fv, Rf, imm5 0x05 FP Op Rf Fv 0 0100101 imm5
release Rf 0x01 Op Rf 11111 0 0 0101000 11111

(future remote async) 0x01 Op x x x x 010xxxx x
(future remote async) 0x05 FP Op x x x x 010xxxx x

sync Rf, Rc 0x01 Op Rf 11111 0 0 0110000 Rc
getg Rf, imm5, Rc 0x01 Op Rf imm5 0 0 0110010 Rc
fgetg Rf, imm5, Fc 0x05 FP Op Rf 11111 0 0110010 Fc
gets Rf, imm5, Rc 0x01 Op Rf imm5 0 0 0110011 Rc
fgets Rf, imm5, Fc 0x05 FP Op Rf 11111 0 0110011 Fc

(future remote sync) 0x01 Op x x x x 011xxxx Rc
(future remote sync) 0x05 FP Op x x x x 011xxxx Fc

allocate Rp, Ro, Rf 0x01 Op Rp Ro 0 0 1000000 Rf
allocate Rp, imm8, Rf 0x01 Op Rp imm8 1 1000000 Rf
allocate/s Rp, Ro, Rf 0x01 Op Rp Ro 0 0 1000001 Rf
allocate/s Rp, imm8, Rf 0x01 Op Rp imm8 1 1000001 Rf
allocate/x Rp, Ro, Rf 0x01 Op Rp Ro 0 0 1000011 Rf
allocate/x Rp, imm8, Rf 0x01 Op Rp imm8 1 1000011 Rf

creba/a Rs, Rv 0x01 Op Rs Rv 0 0 1100001 11111
creba/a Rs, imm8 0x01 Op Rs imm8 1 1100001 11111
creba/s Rs, Rv, Rf 0x01 Op Rs Rv 0 0 1100001 Rf
creba/s Rs, imm8, Rf 0x01 Op Rs imm8 1 1100001 Rf
crebi/a Rs, Rv 0x01 Op Rs Rv 0 0 1110001 11111
crebi/a Rs, imm8 0x01 Op Rs imm8 1 1110001 11111
crebi/s Rs, Rv, Rf 0x01 Op Rs Rv 0 0 1110001 Rf
crebi/s Rs, imm8, Rf 0x01 Op Rs imm8 1 1110001 Rf

(future allocate) 0x01 Op x x x x 1xxxxxx x

crei Rf, imm16(Rp) 0x03 Memory Rf Rp imm16

cred Rf, imm21 0x04 Branch Rf imm21

print Rs, Rv 0x01 Op Rs Rv 0 0 0001111 11111
print Rs, imm8 0x01 Op Rs imm8 1 0001111 11111
printf Rs, Fv 0x05 FP Op Rs Fv 0 0001111 11111

Table D.7: MT extensions for the DEC/Alpha AXP 24264 instruction set.

Non-prefixed values are in base 2, and values prefixed with “0x” in base 16.

Appendix E

On-chip placement and distribution

Abstract

This appendix complements chapter 11 and details the thread mapping of logical
threads to processors as implemented in the MGSim system emulator at the end of
2011.

Contents
E.1 General protocol . 264
E.2 Reference implementation . 265
E.3 SL primitives . 266

263

264 APPENDIX E. ON-CHIP PLACEMENT AND DISTRIBUTION

E.1 General protocol

The requirement for explicit placement is closely related to resource management on chip.
Indeed, bulk creation and thread contexts constitute physical resources over one or multiple
processors; they are allocated and released via dedicated on-chip messages, which can be
sent via processor instructions. Each bulk creation context can be used to activate families
composed of concurrent logical threads; logical threads run on a set of parallel thread con-
texts allocated from physical resources on the same processors as the bulk creation contexts
(section 4.2). Both family and thread contexts are thus finite resources local to each pro-
cessor; a protocol to manually place computation to specific processors is therefore also a
protocol that controls resource usage on chip.

We describe the proposed protocol here.
To start with, all execution units (processors, or “cores”) are provided an address on an

on-chip network. The “allocate,” “create” and other concurrency operations from chapter 4
should be considered as event messages on this network.

A single family allocation event reserves a “virtual” family context spread over multiple
cores, which can subsequently be bulk-created and bulk-synchronized. For this the program
optionally provides a placement size along with the target processor address upon family
allocation (section 4.3.2.1). If this size is larger than 1, the processor receiving the alloca-
tion may optionally negotiate a multi-core allocation with its neighbors (according to the
topology of the network), trying to maximize the number of processors up to the size speci-
fied. As with the window size (section 4.3.2.2), parallelism is not guaranteed: the placement
size is only an upper bound and the work can be performed even if only one processor is
available, or if multi-processor allocation is not supported on that processor, regardless of
the size specified.

When a multi-processor allocation completes, a bulk creation context has been reserved
on each selected processor and all the contexts are linked to a master context selected
among them. This context becomes the result of the original allocation event. When the
subsequent creation event is sent to the master context, that processor forwards the creation
to all participating processors; conversely, bulk synchronization on the master context effects
bulk synchronization on all contexts. The master context is thus a proxy and provides the
same interface as a single-processor family context to the issuing thread.

To support implicit placement, each bulk creation context further holds a default target
processor and placement size, which is called its default placement. When a bulk creation
context is allocated, the default placement is automatically set to the placement specified
during allocation. When an allocation is issued by a program without an explicit placement,
the default placement is used. This allows a program to automatically restrict the parallelism
of a tree of implicitly placed concurrent families to a local cluster around the designated
processor, bounded by the placement size.

Finally, the program can also parameterize the logical thread distribution of logical
threads over processors. At least two distribution strategies are defined. The default is
a flexible distribution which leaves the distribution unspecified, with the guarantee of a best
effort to maximize the amount of parallelism by the specific architecture implementation
(e.g. via work stealing). This allows a program to offload load balancing to the under-
lying hardware implementation. However, when the group of processors is known to be
homogeneous, or when an explicit assignment is desired, the program can specify an even
distribution explicitly which statically partitions the logical threads indexes evenly over the
selected processors.

E.2. REFERENCE IMPLEMENTATION 265

Address used Automatically transformed to Message sent to
0 Default placement Implicitly, same processor clus-

ter as where the issuing thread
was placed

1 Processor address of the local pro-
cessor, size 1, same capability

Implicitly, same processor as
where the issuing thread is run-
ning

C + 2P + S Processor address P , size S, capa-
bility C

Explicit target cluster

Table E.1: Address transformation for allocation messages on chip.

E.1.1 Global family identification

As families can be created across the chip and synchronized on from processors other than
where they were created, the protocol defines Global Family Identifiers (GFIDs). These are
composed of two parts: the address of the processor where the context is allocated (or the
address of the master processor for distributed families) and the address of the context in
the local structures of that processor.

To allow flexible control of bulk creation contexts and families by programs across ar-
bitrary points on the chip, the address of a context can be observed and manipulated as a
value. Its encoding is constrained to fit in the smallest common machine word size supported
throughout the chip, in order to facilitate the integration in a software stack.

E.1.2 Isolation and capabilities

With regards to isolation, the protocol is extensible using capabilities [Lin76]. When these
are used, each processor on the system holds a table of processor access capabilities, main-
tained by system-level resource managers, which filters incoming allocation messages. Pro-
grams must then request capabilities to said resource managers before they can issue “allo-
cate.” The capabilities need not be visible to programs, as it can be embedded either in a
private memory at the requesting core (when dedicating entire cores to an isolated process)
or the requesting family or thread context (when fine-grained access control is desired).
Upon receiving an allocation message, a core allocation unit then generates a family access
capability along with the GFID returned to the requesting thread. This must then be joined
with the core capability upon subsequent creation, remote register accesses, synchronization
and release messages. When a bulk creation context is allocated in one protection domain
and used in another, the resource manager must be informed accordingly to propagate the
access capabilities.

E.2 Reference implementation

The protocol described above has been prototyped in the system emulator for testing pur-
poses, as follows:

• all the processors are numbered along a space-filling curve to ensure multi-scale space
locality on the distributed cache network (fig. 3.9);

266 APPENDIX E. ON-CHIP PLACEMENT AND DISTRIBUTION

Side note E.1: Processor address decoding in the reference implementation.
The addressing scheme requires that all cluster sizes are powers of two, and that a cluster of any size S must
start with a processor address multiple of S. The capability bits are placed on the MSBs unused by the
processor address.
For example, the value A = 112040 on a chip with N = 64 processors, encoded in binary as
11011010110101000, corresponds to:

• S = 8: find the first bit set from A’s LSB, here 1000,
• P = 16: compute A−S

2
mod N , here 010000,

• C = 112000: compute A mod 2N , here 11011010110000000.

Side note E.2: About the distribution of families with “shared” channels.
For families of threads using “shared” synchronizers (section 4.3.3.3), all threads are always created at the
first processor of the target cluster, although their default placement may be configured to the entire cluster.
The reason why local threads for this kind of family are not spread over multiple cores stems from an obser-
vation when such an implementation was tried. If such families were distributed over multiple processors,
the first logical thread which reads from an input “shared” channel on every processor would wait for the
corresponding output by from the last logical thread on the previous processor. This would effectively force
a sequentialization of the entire communication chain and prevent multi-processor scalability altogether. As
this effect was likely to cause programs to avoid using the feature, the extra effort required to implement
the feature was not invested.

1 stat ic inl ine s i ze_t s l_placement_size (s l_place_t C)
2 {
3 // erase a l l b i t s s e t but the r ightmost , i . e . the s i z e
4 return C & −C;
5 }

Listing E.1: Placement computation that extracts the size from a virtual cluster address.

• the placement operand provided to the “allocate” operation (section 4.3.2.1) is handled
by the hardware as per table E.1 and side note E.1.

• the implementation supports the even distribution strategy of logical threads to pro-
cessors in distributed families, but only for families without “shared” channels (cf. side
note E.2);

• capabilities are decoded but not verified (yet).

Also, new assembler mnemonics “getpid” and “getcid” are introduced which map to
machine instructions that read the default placement and the local processor address of the
issuing thread, respectively.

E.3 SL primitives

To control this protocol, the primitives in listings E.1 to E.6 and table E.2 are available in
a SL library header file.

E.3. SL PRIMITIVES 267

Primitive Alpha instruc-
tions

SPARC instruc-
tions

sl_placement_size 2 2
sl_first_processor_address 2 2
split_upper 5 5
split_lower 5 5
at_core 7 6
split_sibling 11 11
next_core 13 13
prev_core 13 13

Table E.2: Execution cost of the placement primitives.

All instructions can be performed locally in the ALU in one pipeline cycle.

1 stat ic inl ine s l_place_t s l_ f i r s t_proce s so r_addre s s (s l_place_t C)
2 {
3 // erase the r i gh tmos t b i t se t , i . e . the s i z e
4 return C & (C − 1) ;
5 }

Listing E.2: Placement computation that extracts the absolute address of the first core in a
virtual cluster.

1 stat ic inl ine s l_place_t sp l i t_upper (void) {
2 s l_place_t d = sl_default_placement () ;
3 s i ze_t s i z e = sl_placement_size (d) ;
4 return d + s i z e / 2 ;
5 }
6 stat ic inl ine s l_place_t sp l i t_ lower (void) {
7 s l_place_t d = sl_default_placement () ;
8 s i ze_t s i z e = sl_placement_size (d) ;
9 return d − s i z e / 2 ;
10 }

Listing E.3: Placement computation that divides the current cluster in two and addresses
either the upper or lower half.

1 stat ic inl ine s l_place_t at_core (unsigned int P) {
2 s l_place_t d = sl_default_placement () ;
3 s l_place_t f = s l_f i r s t_proce s so r_addre s s (d) ;
4 return (f + P ∗ 2) | 1 ;
5 }

Listing E.4: Placement computation to place all the created thread at a core offset P within
the local cluster.

268 APPENDIX E. ON-CHIP PLACEMENT AND DISTRIBUTION

1 stat ic inl ine s l_place_t s p l i t_ s i b l i n g (void) {
2 s l_place_t d = sl_default_placement () ;
3 s i ze_t s i z e = sl_placement_size (d) ;
4

5 s l_place_t lp = s l_loca l_proces sor_addres s () ;
6 s l_place_t mybit = (lp ∗ 2) & s i z e ;
7 s l_place_t o th e rb i t = mybit ^ s i z e ;
8

9 s l_place_t f = s l_f i r s t_proce s so r_addre s s (d) ;
10 return f | o t h e rb i t | (s i z e / 2) ;
11 }

Listing E.5: Placement computation that divides the current cluster in two and addresses
the other half relative to the current core.

1 stat ic inl ine s l_place_t next_core (void) {
2 s l_place_t d = sl_default_placement () ;
3 s i ze_t s i z e = sl_placement_size (d) ;
4

5 s l_place_t lp = s l_loca l_proces sor_addres s () ;
6 // make r e l a t i v e to s t a r t o f c l u s t e r
7 s l_place_t re l_lp = lp & (s i z e − 1) ;
8

9 // next core address :
10 s l_place_t rel_np = (re l_lp + 1) & (s i z e − 1) ;
11

12 s l_place_t f = s l_f i r s t_proce s so r_addre s s (d) ;
13 return (f + rel_np ∗ 2) | 1 ;
14 }
15 stat ic inl ine s l_place_t prev_core (void) {
16 // same as ‘ ‘ nex tcore ’ ’ wi th
17 // (re l_ lp − 1) in s t ead o f (r e l_ lp + 1) .
18 }

Listing E.6: Placement computation to place all the created thread at the next or previous
core within the local cluster.

Appendix F

Semantics of objects in the C language

Abstract

The process of extending the C language for use with a new processor archi-
tecture with hardware support for synchronization channels requires us to carefully
avoid clashes between the hardware semantics and the (well-specified) semantics of
the C abstract machine. As a foundation to this work, we analyzed the specification
in [II99, II11b] to uncover and summarize how the C language handles data in pro-
grams. To our knowledge, no such analysis exists in previous work. Our findings are
detailed here.

Contents
F.1 Fundamental characteristics . 270
F.2 Basic operations . 271
F.3 Syntax in the C language . 272
F.4 Space for optimization . 272
F.5 Lexical binding of lifetimes and resource allocation . 273
F.6 Primary designators . 273
F.7 Secondary designators . 273
F.8 The fine print in the C semantics . 274

269

270 APPENDIX F. SEMANTICS OF C OBJECTS

Side note F.1: About the concept of objects in the C language specification.
While objects are a central concepts in the abstract semantics of C, they are only indirectly defined through-
out [II99, II11b] and similar documents. An object is any of the following: an entity defined by a declaration,
an entity defined by a non-array function parameter declaration, a constant (character/integer, floating-point
or literal string), the value of an initializer, the value of an enumeration tag, an allocated object, the result
of a computation in an expression, the return value of a function call. The following are not objects despite
the possibility of taking their address: functions, labels (in some implementations).

Side note F.2: About immutable objects.
The following objects are immutable: constants, the value of initializers, the value of enumeration tags,
temporary results in expressions, return values of function calls, objects defined with the const qualifier,
non-array function parameters declared with the const qualifier; the following objects are mutable: objects
defined without the const qualifier, non-array function parameters declared without the const qualifier.

Side note F.3: About objects without an address.
The following objects cannot have their address taken: objects defined with the register storage-class
qualifier, temporary results in expressions, return values of function calls, constants, the value of initializers,
the value of enumeration tags; the following objects can have their address taken: objects defined without
the register storage-class qualifier, non-array function parameters, allocated objects.

F.1 Fundamental characteristics

An object is an entity able to store data for a C program.
A C object exists thoughout its lifetime.
The following properties of objects are defined and fixed throughout their lifetime:

• whether the object is mutable or not;
• whether the object can have its address taken or not;
• its size.

The properties of an array considered as an object always extend as properties of its
individual items considered as separate objects.

The layout in storage of an object is identical to an array of N objects of type char (N
being the size of the object as per sizeof). This array is the representation of the object.

If an object is mutable, then each char of its representation can be muted (modified)
individually multiple times, and a read to each will consistently and deterministically yield
the value that was last stored before the immediately preceding sequence point. The initial
value of each char of the representation, although unspecified, exists and can be read.

If the address of an object can be taken, then:

• its address is constant throughout its lifetime,
• it is possible to compute the address of each individual char of its representation,
• the addresses of each individual char are contiguous,

Side note F.4: About object sizes.
The size of an object is derived from the type used to define the object, or an expression for allocated
objects. Note that the size is fixed even for allocated objects: the realloc library call semantically returns
a new (distinct) object, although its address may be the same as the object given as input.

F.2. BASIC OPERATIONS 271

Side note F.5: About array item properties.
In particular: the items of a mutable array are separately mutable; the items of an immutable array are
separately immutable; the items of an array that can have its address taken can have their address taken
separately; the items of an array that cannot have its address taken cannot have their address taken sepa-
rately; the size of an array is the size of an individual item multiplied by the number of items in the array.

Side note F.6: About multiple accesses between sequence points.
If an object is written to, then read between two adjacent sequence points, e.g. in p[i++] = ++i, the behavior
of the program is undefined.

Side note F.7: About the initial char representation of objects.
The chars of the object representation can be read. In particular, the behavior of the following program
piece is well-defined and consistently deterministic: int x; x = x ^ x;.

• there exist a valid address one past the last char in its representation.

No two distinct mutable objects that can have their address taken have overlapping
representations.

It is possible to constructs objects of arbitrarily large sizes (as long as matching pointer
types, size_t and ptrdiff_t are provided by the implementation).

F.2 Basic operations

Two basic operations are defined on objects and are valid throughout their lifetime:

• read for all objects;
• write for mutable objects.

The “read” operation has the following properties:

• it always completes within a finite amount of time before the next sequence point is
reached;

• it yields the value stored in the object, according to the type of the designator used
to access the object.

The “write” operation has the following properties:

• it always completes within a finite amount of time before the next sequence point is
reached;

• it modifies the object so that further reads will yield the new value being stored.

Side note F.8: About valid addresses one past the last char.
C provides this guarantee in order to be able to consistently compute sizes by performing pointer arithmetic.
A side-effect (arguably harmless) of this guarantee is that no object can occupy the last char in an address
space.

272 APPENDIX F. SEMANTICS OF C OBJECTS

It is worthy to note that reading from and writing to an existing object has no influence
on the control flow: considering a read and/or write operation, then in all runs of the
program where the sequence point immediately before is reached, if the object exists at that
point the sequence point immediately after is reached in sequence within a finite amount
of time. Of course, if the object does not exist at that point, or if a write operation is
attempted on an immutable object, the behavior is undefined.

F.3 Syntax in the C language

The “read” operation that operates on objects is exposed implicitly in the language when
objects are designated in expressions.

The “write” operation that operates on objects is exposed by the various assign operators
and the increment/decrement operators.

F.4 Space for optimization

The C specification indicates that an expression needs not be evaluated if its value is not
used and it does not have side-effects ([II99, 5.1.2.3§3], cite[5.1.2.3§4]isoc11).

This can be reworded as follows:

• if two writes to an object are expressed in a program and it can be proven during
compilation that no other read to the same object ever takes place (at run-time)
between the two writes, then the program can be transformed to an equivalent program
where the first write is omitted; for example:

1 x = a ; // can be omit ted i f x i s
2 // not read b e f o r e "x=b"
3 // below .
4 /∗ . . . ∗/
5 x = b ;

• if two reads to an object are expressed in a program and it can be proven during
compilation that no write to the same object ever takes place (at run-time) between
the two reads, then the program can be transformed to an equivalent program where
the second read is omitted and the value of the first read is reused instead; for example:

1 a = x ;
2 /∗ . . . ∗/
3 b = x ; // can be expres sed as
4 // "b=a" i f a and x were
5 // not wr i t t en to .

• if a write to an object and a read to the same object are expressed in a program and
it can be proven during compilation that no write to the same object ever takes place
(at run-time) between the write and the read, then the program can be transformed
to an equivalent program where the read is omitted and the value used in the first
write is reused; for example:

1 a = x ;
2 /∗ . . . ∗/

F.5. LEXICAL BINDING OF LIFETIMES AND RESOURCE ALLOCATION 273

Side note F.9: Objects without primary designators.
In some implementations it is possible to define an object with a scoped lifetime, a known type but without
a primary designator, e.g. anonymous (unused) function parameter declarations.

Side note F.10: Primary designator aliases for immutable objects.
The C specification leaves space for an implementation to share an immutable object across multiple primary
designators, e.g. for string literals.

3 b = a ; // can be expres sed as
4 // "b=x" i f a and x
5 // were not wr i t t en to .

This optimization path is used routinely in most production-grade C compilers.

F.5 Lexical binding of lifetimes and resource allocation

The lifetime of an object is either scoped or unscoped. An object has unscoped lifetime if it
is allocated. All non-allocated objects have scoped lifetimes.

Scoped lifetimes are bound to a declaration (either an object definition or a non-array
function parameter declaration) and a syntactic scope, and enforced by the environment
according to completely specified semantics. Unscoped lifetimes are managed explicitly by
the (running) program.

Whether an object with a scoped lifetime exists or not at any given point in a program is
entirely decidable during compilation. Objects with scoped lifetimes have all their properties
known and fixed by their declaration. These two properties allow a compiler to statically
allocate resources for all objects with scoped lifetimes.

F.6 Primary designators

Objects with scoped lifetimes have a type and zero or one primary designator (derived from
their definition).

No two distinct primary designators that designate mutable objects designate the same
object.

As scoping also defines the visibility of primary designators, the portion of a program
where a primary designator is visible is always a subset of the lifetime of the object it
designates.

The main purpose of the design of primary designators in C is to uniquely identify objects.
Objects with unscoped lifetimes do not have a primary designator, always are mutable,

always can have their address taken and have a size equal to the value of the argument of
the function call used to start their lifetime.

F.7 Secondary designators

Any object can have zero or more secondary designators each with their own types (aliases).
For example, in the following program fragment:

274 APPENDIX F. SEMANTICS OF C OBJECTS

Side note F.11: About array designators in function parameter lists.
This the main distinction between array and non-array function parameter declarations: non-array function
parameters are primary designators to distinct objects from the argument in the caller, whereas array
function parameters are secondary designators to the same object as the argument in the caller.

1 int a ;
2 int ∗p = &a ;
3 (a) ;
4 (∗p)

There exists one object with primary designator a and secondary designator *p (and another
object with primary designator p).

Secondary designators are constructed by the program at run-time, using only the fol-
lowing operations:

• from an existing designator, using the unary & operator;
• from an existing designator, using a cast expression;
• from an existing array designator, using the designator in a context where it is con-
verted automatically to a pointer (either during pointer arithmetic, assigment to
pointer, or when passing an array as a function argument);

• from an existing array designator, using the array subscript notation;
• from an existing union or structure designator, using the field subscript notation.

Secondary designators are used by the program using only the following syntax:

• for cast notations, using the cast notation directly;
• for field subscript notations, using the field subscript notation directly;
• for array subscript notations, using the array subscript notation directly;
• for secondary designators derived as pointer values (either by the unary & or using

an array designator in a pointer context), using the unary * operator or the array
subscript notation on a designator with pointer type to an object containing that
pointer value.

The visibility of secondary designators can extend past and before the lifetime of an
object. The behavior of a program that references an object via a secondary designator
outside of its lifetime is undefined.

Secondary designators can designate any contiguous sequence of chars in the representa-
tion of an object; if the object is mutable any modification through a secondary designator
only modifies the bytes designated by the designator as constrainted by its type.

While it is possible to construct a secondary designator to an object defined with const
so that the secondary designator does not have the const qualifier, any attempt to modify
an object through such a designator still has undefined behavior ([II99, 6.7.3§5], [II11b,
6.7.4§6]).

F.8 The fine print in the C semantics

• Any expression expressed in C is a designator for an object; however while some
expressions are secondary designators for an object that already exists, some other

F.8. THE FINE PRINT IN THE C SEMANTICS 275

expressions are primary designators for object defined through them (e.g. intermedi-
ary computation results). Which expressions are primary designators and secondary
designators is entirely specified.

• The C syntax does not allow a program to designate an array item object without
taking the address of the array. Due this feature, an array object which cannot have
its address taken (like when register is used) cannot be used in any useful way.

• If an object cannot have its address taken, then:

– the only kind of secondary designator that can be constructed for the object are
(compatible) cast expressions and union and structure field accesses; in particular,
array subscript and automatic conversion of arrays to pointers are not possible
(by definition) for arrays that cannot have their address taken;

– it is always possible to identify the object, its primary designator (if any), its
lifetime and its other properties (mutability, size) from any of its secondary des-
ignators during compilation;

– the visibility of any secondary designator to the same object is always a subset
of the object’s lifetime;

– it is possible to identify all its secondary designators during compilation.

These properties extend to any object, in a given program, that is proven, within that
program, to not have its address taken (even if it could be taken). This says that if
the property “a specific object does not have its address taken” is verified to be true
for a given object in a program up to a specific point, then the properties above hold
for that object up to the same specific point.

• Non-array function parameter declarations are primary designators to objects whose
initial value is a copy of the value of the object designated by the argument in the
caller, whereas array function parameter declarations are secondary designators to the
object designated by the argument in the caller.

• While the qualifiers on a secondary designator constrain what operations can be ex-
pressed in the language using that designator (for example, a designator with the
const qualifier cannot be used for a write operation), they do not have any impact on
the essential mutability of an object. If the object is mutable, then at least one of the
following always hold:

– the non-const qualified primary designator is visible (then it can be used to write
to the object),

– a new non-const qualified secondary designator can be constructed from a const-
qualified secondary designator and used for write operations with the usual op-
erational semantics of writes.

In particular, the program in listing F.1 is valid.

276 APPENDIX F. SEMANTICS OF C OBJECTS

1 void f oo (const int a []) {
2

3 // here ‘ ‘ a ’ ’ i s a const − q u a l i f i e d secondary
4 // de s i gna to r f o r the array o b j e c t g i ven as
5 // argument by the c a l l e r .
6

7 // so we can cons t ruc t a new secondary
8 // de s i gna to r to drop the cons t q u a l i f i e r
9 // and change the type .
10 char ∗p = (char∗) &a ;
11

12 // the f o l l ow i n g i s a lways v a l i d i f
13 // the array in the c a l l e r has at l e a s t
14 // one item and i s mutable .
15 a [0] = 10 ;
16 }
17

18 int main (void) {
19 int a [1 0] ;
20 f oo (a) ; // v a l i d c a l l , f i r s t by t e o f
21 // array i s modi f ied
22 return 0 ;
23 }

Listing F.1: Const designator to a mutable object.

Appendix G

Original language interface
—Description and defects

Abstract

Prior to our work some research had been realized to design a C-based interface
to the proposed architecture. This appendix reviews this previous work and provides
a comprehensive description of the corresponding language design. Through analysis,
we uncover hidden complexity in this prior language design, and provide a proof that
the language cannot be compiled to some variants of the target architecture interface
from chapter 4.

Contents
G.1 Analysis of pre-existing sources . 278
G.2 Hidden complexity . 284
G.3 Fundamental problem . 289
G.4 Summary and conclusion . 292

277

278 APPENDIX G. ORIGINAL LANGUAGE INTERFACE

Program Description
fibonacci Prints the first values of the Fibonacci sequence (the number of values

is statically configured).
frame-invert Computes the “negative” of a 2D, 8bpp black picture represented as

an Iliffe vector [Ili61] (a one-dimensional array of pointers to one-
dimensional arrays of pixel for each row in the image) of static size,
and prints the result.

matmul Computes the matrix-matrix product of static square integer matrices
(static size and values), and prints the result.

sine Computes the sine of a floating-point value using a 9-level Taylor
expansion, and prints the result.

Table G.1: Example programs using the proposed C extensions, December 2008

Key Title
[Jes06a] µTC - an intermediate language for programming chip multiprocessors.
[Jes06b] Microthreading, a model for distributed instruction-level concurrency.
[BJK07] Strategies for compiling µTC to novel chip multiprocessors.

Table G.2: Academic publications related to the C language extensions, December 2008

G.1 Analysis of pre-existing sources

The process to re-construct the prior art was bootstrapped by a preliminary analysis of
what information was already available. The following is an exhaustive list of the sources
we found relevant to the language extensions at that point (late 2008):

‹i› a library of 4 short example programs written using the proposed primitives, listed in
table G.1;

‹ii› 4 academic publications containing descriptions of the language constructs and exam-
ples, listed in table G.2;

‹iii› an internal (unpublished) technical report describing the language extensions [LB08];
‹iv› program source code for “utc2cpp,” a translator from the proposed language to a

software-based concurrency run-time system [vTJLP09] with different semantics from
the proposed hardware architecture;

‹v› the various authors of the previous sources themselves.

During this research, we also found 7 additional example programs using the proposed
language extensions, developed in a separate project (ÆTHER). However, since these pro-
grams use additional concurrency semantics that are not supported by the proposed archi-
tecture (chapters 3 and 4), they are not further considered here.

G.1.1 Previously consistent statements

Close study of the aforementioned sources reveal the following consensus throughout:

• a new language construct based on the word “create” is added to the C language,
with a syntactic structure similar to C’s for construct, and which can appear in C
code in the same syntactic context as other statements;

G.1. ANALYSIS OF PRE-EXISTING SOURCES 279

1 #define N 100
2 int A[N] , B[N] ;
3

4 thread s c a l e 1 (void) {
5 index int i ;
6 B[i] = A[i] ∗ 2 ;
7 }
8

9 . . .
10 {
11 int f 1 ;
12 create (f 1 ; 0 ; N; 1 ; 0) s c a l e 1 () ;
13 sync (f 1) ;
14 }

Listing G.1: Example code using the “create” construct and separate thread function to
scale a vector.

• the “create” constructs describes a concurrent computation composed of multiple
instances, called logical threads, of a thread program described by a C syntactic block
(text between matched curly braces { and });

• the overall structure of the new construct is the word “create,” followed by concur-
rency parameters between parentheses, followed by a description of the work to do;

• the thread program can be specified as a syntactic construct analog to a C function
definition, but including the special word “thread” in the function declarator;

• the concurrency parameters include the start, limit and step values that determine
the number of logical threads and the logical thread index range (cf. section 4.3.2.3),
as well as a block value that constrains the maximum breadth of actual parallelism
(cf. section 4.3.2.2);

• in the program description of the basic computation unit, the word “index” can be
added to an integer variable declaration to signify that this variable will be automat-
ically initialized by the processor to the logical thread index;

• in the surrounding syntactic block, the control flow is synchronized with the completion
of the concurrent computation at the point where the word “sync” appears;

• the occurrences of the words “create” and “sync” are matched together in the pro-
gram code by the use of a common lexical identifier in the surrounding program text,
which is to be assigned a “family identifier ” value upon the creation of the concurrent
computation;

• the unit of work described by the composition of “create,” “sync” and the related
syntax can be replaced by a for loop in C without changing the computation semantics
of the program;

• the special value 0, when specified for the block parameter, indicates that the underly-
ing architecture is free to select the effective amount of parallelism when instantiating
the work;

• each thread program can itself contain uses of “create” and “sync,” to allow the
hierarchical composition of multiple levels of concurrent computations at run-time.

An example code that illustrates these statements is given in listing G.1. In this ex-
ample, two static arrays A and B are defined in the global scope. Then a thread program

280 APPENDIX G. ORIGINAL LANGUAGE INTERFACE

1 thread innerprod (int∗ X, int∗ Y, shared int s) {
2 index int i ;
3 s = X[i] ∗ Y[i] + s ;
4 }

Listing G.2: Example thread program using a channel interface specification.

that describes one instance of a concurrent computation is defined using the word “thread,”
using also “index” to declare the discriminating logical index i. This thread program can
then be used in another computation block with “create” followed by the concurrency pa-
rameters between parentheses, followed by the name of the thread program. Then the word
“sync” indicates that the control flow of the surrounding block should be suspended until
the concurrent parallel computation completes (bulk synchronization). The concurrency
parameters are specified by positional parameters, that is, their order specifies their role:
the start value appears first, followed by the limit, step and block parameters. The name
of the variable assigned the family identifier is listed as first parameter for both “create”
and “sync.”

In this example, the basic thread program “scale1” only assumes that the index variable
is automatically initialized and that a memory interface (load, store) to the arrays A and B
is available. In particular, the base addresses of the arrays A and B are not a dynamic input
to the basic computation: the position of the array definitions in the global scope imply
that the linker program will rename statically all uses of the names “A” and “B” in the code
to constant array locations in memory.

To define additional input and output channels to a basic thread program, the proposed
language extension allows programmers to declare thread parameters in the definition of a
thread program. All the sources isolated above agree on the following consensus:

• when used with the word “thread,” the syntactic position of function parameter dec-
larations in the function definition (after the function name, between parentheses) is
used to define the interface of the thread program;

• each position of the interface specification declares either one or two separate commu-
nication endpoint for the computation;

• at each position of the interface specification, the name used in the declarator will
subsequently refer to the corresponding communication endpoints;

• at each position of the interface specification, the word “shared” can be added to
distinguish declarations of “global” channels (where all concurrent instances of the
computation must share the same source) from “shared” channels (where the endpoints
are daisy-chained from one instance to the next). This is intended to correspond to
the semantics of the hardware machine interface (cf. section 4.3.3);

• in the thread program, occurrences of the channel endpoint names are intended to
be translated to input operations (for “global” channels) and either input or output
operations (for “shared” channels), depending on whether the name is used as read-only
operand of another C construct, or as the target of an assignment.

Remarkably, any channel declaration with the word “shared” simultaneously declares
two channel endpoints, one for inputs and another, distinct one for outputs.

An example is given in listing G.2. In this example, the definition of the thread program
“innerprod” declares 4 channel endpoints. The first two, designated by the names “X” and

G.1. ANALYSIS OF PRE-EXISTING SOURCES 281

“Y,” correspond to “global” channels in the underlying architecture, i.e. the assumption that
all concurrent instances of the computation unit will share the same data source. The third
position, where the word “shared” is used, simultaneously declares two endpoints with the
common name “s.” The input part is used when the word “s” is subsequently used as an
input operand in an expression, whereas the output part is used when the word “s” is used as
the target of an assignment. The only statement in the program block can be decomposed
as follows:

1. read the first array address from channel “X”;
2. compute the array element address “X[i]” using the logical thread index;
3. issue a load from memory using the address “X[i]”;
4. read the second array address from channel “Y”;
5. compute the array element address “Y[i]”;
6. issue a load from memory using the address “Y[i]”;
7. wait on completion of both memory loads, and add the results;
8. read from the input channel corresponding to the name “s”;
9. add the value read to the intermediate sum;

10. write the result to the output channel corresponding to the name “s”.

Finally, the design called for a means to relate the channel endpoints of the thread
program to the data items in the surrounding code at the point of use of the “create”
construct. This was done as follows:

• in the “create” construct, after the specification of which thread program to run, the
program can specify a list of positional thread arguments with the a syntax similar to
function calls: a comma-separated list of arguments enclosed in parentheses;

• each positional argument corresponds one-to-one to the endpoints of the channel in-
terface specified in the thread program definition;

• for each position corresponding to a “global” channel, the program can specify any
value, to be subsequently propagated by the substrate architecture as the source of
input operations for all concurrent instances of the computation unit;

• for each position corresponding to a “shared” channel, the program can specify a lexical
identifier referring to a C variable declaration in the surrounding scope. The value of
this variable at the point the “create” construct is reached during execution is to be
propagated by the architecture as the source of input operations by the first concurrent
instance of the computation unit; and the value output by the last instance is to be
propagated as the new value of the C variable after the control flow passes the “sync”
word.

An example is given in listing G.3, which complements listing G.2. In this program
fragment, the “create” construct uses the 3 positions of the interface defined by the thread
program “innerprod.” The first two positions, corresponding to the “global” channel declara-
tions X and Y in the definition of “innerprod,” are provided the computed values &A[0] and
&B[0], which describe the start addresses in memory of the arrays A and B, respectively.
The third position, corresponding to channel “s” in “innerprod”, is provided the identifier
“res” which names a variable declared in the same scope. The value of “res” at the point the
“create” construct is reached is determined by the assignment that immediately precedes
(0 in this case), and this is the value sent as input to the first instance of the computation.
When the last instance completes, the value it writes to its output channel for “s” is then

282 APPENDIX G. ORIGINAL LANGUAGE INTERFACE

1 #define N 100
2 int A[N] , B[N] ;
3

4 . . .
5 {
6 int res , f 1 ;
7 . . .
8 r e s = 0 ;
9 create (f 1 ; 0 ; N; 1 ; 0) innerprod(&A[0] , &B[0] , r e s) ;
10 sync (f 1) ;
11 p r i n t f ("The␣sum␣ i s ␣%d\n" , r e s) ;
12 }

Listing G.3: Example use of the “innerprod” thread program.

propagated back to “res” in the invocation context. In the example this value is then printed
to reveal the result of the computation.

G.1.2 Committed but unsupported features

The description given in the previous section is sufficient to explain the program code in
source ‹i›; moreover, it is consistent with all the code fragments given as illustrations in
source ‹ii›.

In this section, we provide the additional statements about the language design that have
been stated in sources ‹ii› to ‹iv› which were not directly illustrated by example programs.
Because they were stated in writing and agreed upon, they were assumed to be part of the
language specification by the research community. However these are also the point where
the language design became inconsistent with the hardware design.

The first additional statement concerns the relationship between the words “create” and
“sync” in the language syntax. While the first publications [Jes06a, Jes06b] and source ‹i›
are silent on this topic, the paper [BJK07] and sources ‹iii› and ‹iv› indicate that:

• the construct starting with the word “create” and ending with the thread argument
specification and a semicolon can be used in the syntactic place of a C statement, and

• the construct starting with the word “sync,” followed by a family identifier variable
between parentheses and a semicolon, can also be used in the syntactic place of a
statement, albeit at a different statement position in the program than the “create”
construct.

In other words, this additional formulation decouples the “create” and “sync” part of
a concurrent work definition. Although no example was given alongside this statement,
its consequences are clear: the design allows the expression of other statements, control
flow structures or blocks in the program text between the “create” and “sync” parts. The
motivation of this clarification was twofold. The first was increase the amount of concurrency
that could be expressed, by allowing the description of extra computations that could be
carried out simultaneously with the concurrent work described by “create,” before the
“sync” construct is reached by the control flow. However, the main motivation for this
extra step was to also state that:

G.1. ANALYSIS OF PRE-EXISTING SOURCES 283

Side note G.1: Attempt to constrain the well-formedness of programs.
Interestingly, the last part of the quoted statement, which tries to establish a criterion for the well-formedness
of programs, actually fails to do so. Indeed, for any actual execution of a thread program containing both
“create” and “sync” constructs, the execution can be described as a single sequence of intermediate steps
which describe how the control flow actually passes all sequence points in the program1. In any such
sequence, observed at the point in time “sync” occurs, at most one “create” antecedent will have assigned a
value to the same family identifier variable prior to that point. Because the execution of a thread program
is (conceptually) sequential, there is no circumstance where more than one “create” produces the family
identifier value eventually consumed by “sync.” Therefore, this last sentence, while logical, provides no
sensical criterion to determine whether a program is well-formed or not.

• for any given “create” construct, the corresponding “sync” construct is optional; that
is, a program can define an asynchronous computation which is not waited upon by
the creating thread.

This extra step forward in the design was pressured by project partners during the
separate project ÆTHER, as it was perceived to be required to implement a run-time system
for the coordination language S-NET [GSS10, JS08], later revisited in [H1̈0, Chap. 7]). The
step was made and the corresponding language feature implemented in the software-based
run-time system [vTJLP09] that was used as prototype before the Apple-CORE project
started. However, this decision was taken independently from the architecture research that
led to the design we describe in chapters 3 and 4.

Finally, in source ‹iii› (Section “Microthread C,” sub-section “sync”), we found the only
further constraint on the relative placement of the constructs in the text of a program:

“The sync function must not be used outside of a thread function and the argu-
ment must identify a variable [...] defined in the scope of the thread function in
which the sync occurs and must under all circumstances be the direct result of
a single create statement in the same scope as the sync. That is, the program is
malformed if there exists the possibility that the sync is used on [...] the result
of different creates.”

The main message of this statement is that

• both “create” and “sync” constructs pertaining to the same variable holding a family
identifier must appear in the same scope.

This statement further prevents a program to be structured in such a way that a con-
current work unit is created in one thread, and synchronized upon in a different thread, as
this feature was not available in the underlying hardware architecture.

G.1.3 Overly restrictive statements

In source ‹iii› (Section “Microthread C,” subsection “Program Structure”), we further find
that

1This is opposed to the abstract view of the control flow graph as a whole, which considers simultaneously
all possible paths through the graph.

284 APPENDIX G. ORIGINAL LANGUAGE INTERFACE

1 void bar (int ∗p) {
2 ∗p = 10 ;
3 }
4

5 thread f oo (shared int x) {
6 int ∗p = &x ;
7 bar (p) ;
8 }

Listing G.4: Using the “address of” operator on a channel endpoint.

“There are no regular C function calls allowed in [the proposed language exten-
sion]. All [functions] must be defined as thread functions and ‘called’ via the
create action.”

This conflicts with the requirements of generality set forth in section 6.2.1.

G.2 Hidden complexity in the proposal

To gain further understanding of the proposed language semantics, we can attempt to craft
programs which exercise specifically what the documented prior work did not state about
the new constructs. This revealed additional, hidden complexity in the design which was
not envisioned by the research group previously. These are described here.

G.2.1 Nature of thread parameters

This code has no meaning with the target machine interface. Indeed, the communication
channel endpoints are hardware synchronizers which cannot be indirectly addressed (sec-
tion 4.2).

In more general terms, thread parameter names are not designators for C objects. As
per the terminology introduced in Appendix F, the endpoints of communication channels do
not have storage, so they do not fall under any of the categories for objects in C. Moreover,
[II99, II11b] indicate that “an identifier can denote an object; a function; a tag or a member
of a structure, union, or enumeration; a typedef name; a label name; a macro name; or
a macro parameter.” By introducing a new concept which does not fall in any of these
categories, the “thread parameter,” the proposal thus requires to extend the definition of
identifiers in C and the semantics of identifiers in expressions. We must first extend the
following properties of identifiers:

• about scope, [II99, 6.2.1§2] and [II11b, 6.2.1§2]: thread parameter identifiers have block
scope, over the extent of the thread program body;

• about name spaces, [II99, 6.2.3] and [II11b, 6.2.3]: thread parameter identifiers are
ordinary identifiers, i.e. they are in the same name space as ordinary variables, base
types, typedef names and enumeration constants.

Then we consider that C only allows identifiers that refer to objects and functions in
expressions ([II99, 6.5.1§2] and [II11b, 6.5.1§2]). This needs to be extended; however we
must be careful in doing so: it is not sufficient to specify that “thread parameter identifiers

G.2. HIDDEN COMPLEXITY 285

are primary expressions,” we must also indicate how they are converted to a value that can
be computed upon. To do this, we start by looking at the way C gives values to identifiers
for objects and functions:

• 6.5.1§2 indicates that an identifier that designates an object is an lvalue; then 6.3.2.1§2
indicates an lvalue which does not have an array type is converted to the value stored
in the designated object (and is no longer an lvalue); 6.3.2.1§3 indicates that an lvalue
which designates an array is converted to a pointer to the start of the array (and is no
longer an lvalue).

• 6.3.2.1§4 indicates that function designators, when used in expressions, are converted
to a pointer to the function.

None of these statements apply to thread parameters; in particular thread parameters
are not lvalues. Based on the sources we have isolated, we construct the following additional
statement:

• identifiers for thread parameters are primary expressions; identifiers for “global” chan-
nels are converted to the value read from the corresponding channel endpoint; identi-
fiers for “shared” channels are converted to the value read from the input endpoint of
the corresponding channel pair; in both cases they are not lvalues.

With this statement, an expression of the form “x + 3” where “x” denotes a thread
parameter becomes meaningful and has a value. Meanwhile, an expression of the form “&x”
is disallowed, because “x” is converted to a non-lvalue first, so the & operator cannot be
applied any more.

However, this is not sufficient to provide a meaning to all examples shown so far. Indeed,
since thread parameter identifiers are not lvalues, they cannot appear at the left hand side
of assignment operators (“=” “+=” etc., as per [II99, 6.5.16§2] and [II11b, 6.5.16§2]). A new
meaning is thus required to allow expressions of the form “x = x + 3” where “x” denotes a
thread parameter.

Most of the extra complexity lies here: the entire semantics of assignments in C require
an object on the left-hand side of the operator. The constraints about typing, the semantics
of the assignments regarding object representation and overlap, etc., are defined with the
assumption that the target of the assignment is an object. To provide meaning to the
examples, we must extend the definition of assignments to signify the output of a value on
the outgoing endpoint of “shared” channels.

Moreover, the main definition of assignments ([II99, 6.5.16§3] and [II11b, 6.5.16§3]) in-
dicates that the value of the entire assignment is the value of the left operand after the
assignment. This is meaningless in our setting, and even quite dangerous, since the input
endpoint of a “shared” channel may not be readable any more after the output endpoint has
been written to (side note G.2).

In order to address this situation, the only way we found to give a meaning to the
examples that would be otherwise compatible with existing C semantics is to create a new
statement dedicated to the outgoing communication over “shared” channels:

• Syntax: an identifier that designates a thread parameter for a “shared” channel, fol-
lowed by the assignment operator, followed by an expression, followed by a semicolon,
is a shared channel assignment ; this extends the syntax of expression statements ([II99,
6.8.3] and [II11b, 6.8.3]):

286 APPENDIX G. ORIGINAL LANGUAGE INTERFACE

Side note G.2: About the input availability of “shareds” after writes.
With the “hanging” synchronizer mapping introduced in section 4.3.3.3, the endpoints of the outgoing
“shared” channels to the first thread and the incoming “shared” channels from the last logical thread in
a family are mapped to the same synchronizers in storage. This means that any value populated for the
first created thread is overwritten by outputs performed by the last thread. If there is only one thread in
the created family, this implies that the input endpoint in the created thread cannot be read reliably after
the output endpoint is written to (the read will not produce the original value).

expression-statement :
identifier = expression ;
expressionopt ;

This definition introduces a syntactic ambiguity between the new shared channel as-
signment, and assignment expressions where the left hand side lvalue is an object
identifier. However the ambiguity can be resolved by disambiguating identifiers dur-
ing lexical analysis, by ensuring that thread parameter identifiers have their own lexical
class. No conceptual difficulty is added here, because lexical disambiguation of identi-
fiers is already a prerequisite of C (e.g. to disambiguate “x * y;” which can be either an
expression if the first identifier refers to an object, or a declaration if the first identifier
refers to a type).

• Semantics: a shared channel assignments emits the value of the expression on its right
hand side to the outgoing channel endpoint of the “shared” channel pair designated by
its left hand side.

We can then simply extend this definition to compound assignment operators (“+=”,
etc) by establishing an equivalence between the form “x += E ;” and the form “x = x + E
;”

To summarize, we found that proper handling of thread parameters requires a new
abstract concept in the C language, an extension of the definition of identifiers, and a new
statement dedicated to communicate through the outgoing channel of a “shared” channel
pair. This was not visible in the original language extension proposal.

G.2.2 Addressability of thread arguments

Consider the example fragment in listing G.5. This fragment appears valid. The “create”
construct defines a concurrent unit of work using the thread program “foo.” It also properly
uses a local variable identifier as a thread argument for the “shared” channel, which provides
the declared initial value of “x” (5) as the source value for the computation. Later in the
program code the “sync” construct is used with the valid family identifier variable to wait
on termination of the concurrent computation, and the final value of “x” is only assigned to
“y” after the control flow passes “sync.”

However, what is the value of variable “y” after execution passes the sequence point on
line 14? How to ensure this?

According to the object semantics of the C language, detailed in Appendix F:

• line 7 defines an object of type “int” designated by the name “x;”
• line 9 defines an object of type “int*” designed by the name “p;” and
• it also defines the expression “*p” to be a secondary designator for the object designated
by “x.”

G.2. HIDDEN COMPLEXITY 287

1 int o f f s e t = 0 ;
2 int∗ i d e n t i t y (int∗ p)
3 { return p + o f f s e t ; }
4 thread f oo (shared int x) { . . . }
5

6 void bar (void) {
7 int x = 5 ;
8 int f , y ;
9 int ∗p = &x ;
10 p = id en t i t y (p) ;
11

12 create (f ; 0 ; 1 ; 1 ; 0) foo (x) ;
13 sync (f) ;
14 y = ∗p ;
15 }

Listing G.5: Pointer aliasing a channel endpoint.

From that point onward, C mandates that “x” and “*p” refer to the same object, as well
as any expression of the form “*E” where the pointer value E is equal at run-time to the
value of the expression “&x.” Since expressions of the form “*E,” when the value of E is not
statically known, are always handled as memory loads, this implies that the object designed
by both “x” and “*p” must be stored in memory, at an address copied to the pointer object
designed by “p.” This applies here because the value of the object designed by “p” cannot be
statically determined after line 10 (since the global-scope variable “offset” may have a non-
zero value at run-time, it is not possible to derive statically the certainty that the function
named “identity” always returns its argument).

However, when execution reaches the “create” construct, the value of the object designed
by “x” must be present in machine register so it can become the source value for the input
communication in the thread program “foo” (section 4.3.3.3) This appears at first sight to
conflict with the declaration semantics described above; to resolve this conflict a compiler
must duplicate the object into a register upon the “create” construct, reserve the register
until the “sync” construct, and copy back the value from the register to the same memory
location immediately after the “sync” construct so that the subsequent use of “*p” produces
the desired behavior.

This entails extra complexity in the implementation because existing C compilers in-
ternally only associate one storage for each object at each point in the control flow graph
(either register or memory). Here the memory location must be preserved, alongside the
register name used as channel endpoint, along the edges of the control flow at all points
between the “create” and “sync” constructs.

G.2.3 Two-way implicit type conversions

Consider the example program fragment in listing G.6. In this fragment the name “z”
designates an object of type “float.” However, the thread interface of “foo” expects a channel
of type “int.” In the machine interface, different register classes are used for integer and
floating-point values: the value read by the instance of “foo” must be present in an integer
register. This appears to conflict with the declared type of “z.” To resolve this conflict, a

288 APPENDIX G. ORIGINAL LANGUAGE INTERFACE

1 thread f oo (shared int x) {
2 x = x / 2 ;
3 }
4 . . .
5 {
6 int f ;
7 f loat y , z = 4 . 5 ;
8 create (f ; 0 ; 1 ; 1 ; 0) foo (z) ;
9 sync (f) ;
10 y = z ;
11 }

Listing G.6: Implicit endpoint type conversion.

1 thread f oo (shared int a ,
2 shared int b , shared int c) ;
3 thread bar (shared int d ,
4 shared int e , shared int f) ;
5 . . .
6 {
7 int x = 1 , y = 2 , z = 3 ;
8 int f1 , f 2 ;
9 create (f 1 ; 0 ; 1 ; 1 ; 0) foo (x , y , z) ;
10 create (f 2 ; 0 ; 1 ; 1 ; 0) bar (z , y , x) ;
11 sync (f 1) ;
12 sync (f 2) ;
13 }

Listing G.7: Multiple orderings of the same endpoint names.

compiler must automatically reserve an integer register upon the “create” construct and
convert the floating-point value from the object designated by “z” to this register prior to
the family creation. Then it must also convert back the final value of this register after the
“sync” construct into the object designated by “z.”

This entails extra complexity in the implementation because existing C compilers only
introduce automatic type conversions between sequence points for designated objects. Here
the conversion must occur before the sequence point that immediately follows “sync”, but
there is no object designator mentioned at point in the program text. To support this
a compiler must track internally all objects that need conversion from the point where
“create” is used until the point “sync” is used.

G.2.4 Reuse of “shared” thread arguments

Consider the fragment in listing G.7. This code is valid according all the definitions intro-
duced so far. The difficulty with this example is to determine its semantics. The definitions
up to this point open two possible views:

• in the first view, which we shall name “abstruse and broken” (A&B) hereafter, the
variables designated by “x,” “y,” and “z” are established as semantically synonymous

G.3. FUNDAMENTAL PROBLEM 289

with the communication channel endpoints. In this view, the first creation at line 9
has well-defined semantics, and the initial values for “x,” “y” and “z,” respectively 1,
2 and 3, are used as the source values for the first created family. Then, because
the names are synonymous with the channel endpoints, their value becomes undefined
immediately after the “create” construct: as soon as the first creation occurs, there is
no scheduling guarantee and the created thread may concurrently output new values
to either “x,” “y” or “z” before the second “create” construct is reached at line 10 in
the creating thread. So the second creation has a race condition. Then another race
condition exists at the first synchronization on line 11 since the second family may
write to its final output “shared” channel before the first family does and terminates.
This second race condition persists even if the synchronization order is inverted.

• in the second view, which we shall name “cumbersome and defective” (C&D) hereafter,
the variables designated by “x,” “y,” and “z” have their own storage, are copied to
channel “buffers” upon family creation, and copied back from the channel buffer to
their own storage upon family synchronization. In this view, both creations have well-
defined semantics, and the initial values for “x,” “y” and “z,” are used as source values
for all “shared” channels “a” to “f.” Then the values of the variables remain unchanged
in the creating thread until line 11 is passed, at which point they are updated with
whichever values were produced by the first family; then they are updated again at
line 12 with the values produced by the second family.

More generally, with the view A&B, the semantics become undefined due to race con-
ditions as soon as a common variable name is used as “shared” thread argument for two
families created from the same thread concurrently. This race condition is resolved in view
C&D, at the expense of doubling the space requirement and extra copy operations at each
creation and synchronization. The extra space requirement is especially troublesome, be-
cause it must be allocated from the register name space which is typically small (32/64
registers). Also, these extra costs defeat a primary benefit of the architecture, namely lean
and fast family creation and synchronization.

G.2.5 Summary of the hidden complexity

We do not detail further the implementation complexity, in a compiler, of either of these
views, because we eventually side-stepped this issue entirely in the solution presented in
chapter 6. However, we can summarize this section as follows: were the proposed language
extensions adopted, this examples exposes yet another unforeseen complexity in the design:
either broken semantics, or cumbersome extra channel buffers.

G.3 Fundamental problem with the original language proposal

In this section, we prove that the language described in this appendix, in contrast to the
one described in chapter 6 and Appendix I, cannot be compiled to a machine interface with
“fused” creation such as described in section 4.3.1.2.

G.3.1 Non-composability within statement blocks

Let us consider the program fragment in listing G.8. This fragment is correct according to
the original proposed language semantics described above. Its control flow is given in fig. G.1.

290 APPENDIX G. ORIGINAL LANGUAGE INTERFACE

1 thread f oo (shared int x) ;
2 int t e s t (int x) ;
3

4 void bar (int N) {
5 int i , x , f ;
6 for (i = 0 ; i < N; ++i) {
7 x = i ;
8 create (f ; 0 ; 1 ; 1 ; 0) foo (x) ;
9 i f (t e s t (f) == 0) {
10 sync (f) ;
11 i = x ;
12 }
13 }
14 }

Listing G.8: Example program fragment using “create”

When control enters the body of the function “bar,” it reaches a loop. At each iteration,
a concurrent work unit is created with one logical thread, given the iteration counter as
input value for a “shared” channel. The family identifier value produced by the “create”
construct is then provided as argument to the function “test,” and depending on whether the
call to “test” evaluates to 0, the family is synchronized upon before the next iteration starts
and the iteration counter reset with the output value of the family’s “shared” channel. The
important property of this example is that the number of loop iterations, and whether the
family is synchronized upon, is decided at run-time: neither the value of “N” nor the return
value of “test” can be proven statically. Moreover, it is not possible to reorder the loop body,
because there is a data dependency between “create” and the call to “test,” a control flow
dependency between the call to “test’ and the use of “sync,” and a data flow dependency
between each use of “sync,” and the next loop iteration. Finally, if the thread program
“foo” is known to be deterministic, and “test” is known to always returns 0 at run-time, all
executions of the function “bar” will always be fully determinisitic (in particular without
concurrent race conditions) regardless of the choice of semantics opened in Appendix G.2.4.

Although the program fragment has well-defined semantics, it cannot be compiled to the
target machine interface using “fused” create operations (section 4.3.1.2).

To prove this, we start by reminding ourselves of the semantics of the fused creation:
this binds a machine register name from the point of family creation until the family termi-
nation at run-time. To cause the thread execution to wait until termination of the created
family (the effect of running through “sync” in the control flow), it suffices that execution
reaches an operation that uses this register name as operand. Conversely, in order to avoid
synchronization on termination (the effect of not running through “sync” in the control
flow), it is necessary that all operations executed after the “create” instruction avoid using
this register name as operand until the thread terminates, i.e. here until execution exits the
control flow graph of “bar.”

Then we consider all potential encodings of basic block BB2 in fig. G.1. For any potential
valid encoding E of this basic block, E necessarily contains an occurrence of the “create”
instruction, since the “create” construct is present in the source language. Let us consider
the register name “$R” used as operand to the “create” instruction in E. To support the run-
time case where edge E3 is taken and the family termination is not synchronized upon by

G.3. FUNDAMENTAL PROBLEM 291

yes

no

no

yes

i := 0

x := i;
create(f; 0; 1; 1; 0) foo(x);

c := test(f)

test c == 0

sync(f);
i := x

i := i + 1

START

END

test i < N

test i < N

no
yes

BB2

BB1

BB3

BB4
E1

E2

E3

E4

E5

E6

Figure G.1: Control flow graph of the function “bar” in listing G.8

the thread, necessarily all further basic blocks down the control flow graph must avoid using
“$R.” This includes basic block BB4, but also basic block BB2 due to the backward edge E6.
Therefore E must not use “$R,” which contradicts the definition of “$R.” The contradiction
entails that there exists no valid encoding of basic block BB2, i.e. that listing G.8 cannot
be compiled to the machine interface.

This example is sufficient to prove that the source language cannot be compiled to a
machine interface with fused creation, since there exists some valid input programs without
a valid target encoding. When we initially proposed this proof, we were told that the
example is convoluted, and that the input language definition might still be “good enough”
if programs without cycles in the control flow graph can be compiled. Unfortunately, this is
not possible either.

To understand why, let us consider the program fragment in listing G.9. This fragment
contains a linear sequence of N uses of the “create” construct, where N is equal or greater
the number of hardware register namesM available in the target machine interface (e.g.M =
32, N = 33). Again, this program fragment is valid according to the original proposed
language semantics. Let us thus consider any potential encoding E of this fragment. As
seen above, the encoding of each “create” construct must avoid using any register name
used by all previous “create” constructs that dominate it in the control flow graph. For the
first “create” construct, one of M register names is used in E. For the second “create”
construct, one of M − 1 register names is used in E. And so on inductively, until the Mth
“create” construct, where one in 0 remaining register names is used in E. Since this is not
possible, E does not exist, i.e. listing G.9 cannot be compiled.

More generally, any potential compilation scheme for the proposed “create” construct,
which can be used wherever a C statement can be used, does not compose under the se-
quential composition of C statements.

292 APPENDIX G. ORIGINAL LANGUAGE INTERFACE

1 thread f oo (void) ;
2 thread bar (shared int x) ;
3

4 void baz (void) {
5 int f1 , f2 , . . . f ⟨N⟩ ;
6 int x1 , x2 , . . . x⟨N − 1⟩ ;
7 create (f 1 ; 0 ; 1 ; 1 ; 0) foo () ;
8 x1 = f1 ;
9 create (f 2 ; 0 ; 1 ; 1 ; 0) bar (x1) ;
10 x2 = f2 ;
11 . . .
12 create (f ⟨N − 1⟩ ; 0 ; 1 ; 1 ; 0) bar (x⟨N − 2⟩) ;
13 x⟨N − 1⟩ = f ⟨N − 1⟩ ;
14 create (f ⟨N⟩ ; 0 ; 1 ; 1 ; 0) bar (x⟨N − 1⟩) ;
15 sync (f ⟨N⟩) ;
16 i f (x⟨N − 1⟩) {
17 sync (f 1) ;
18 sync (f 2) ;
19 . . .
20 sync (f ⟨N − 1⟩) ;
21 }
22 }

Listing G.9: Example program fragment using the “create” construct.

G.3.2 Soundness argument

When exposed with the argument above, the designers of the original proposal suggested to
further restrict usage of the “create” construct in specific programs depending on whether
register allocation succeeds for the surrounding thread program; that is, advertise to users
of the compiler technology that the validity of source code can only be checked by actually
trying to process the source code through the specific implementation of register allocation
in a core compiler technology.

This strategy amounts to defining a programming language that is unsound : if two
program fragments A and B are valid because they can be compiled to their machine repre-
sentation [A] and [B], it does not entail that the semantically valid sequential composition
“A;B” can be compiled to a machine representation [A;B].

Since we should deem soundness a strongly desirable property of any machine interface
to a general-purpose processor architecture, an opinion shared throughout our research
community, we conclude that the proposed interface language was inappropriate for use
with the proposed architecture.

G.4 Summary and conclusion

In this appendix, we have thoroughly analyzed prior work on designing a C-based interface
to hardware microthreading. Our analysis shows shortcomings of the prior language design,
including the impossibility to compile the proposed language constructs to a hardware im-
plementation offering “fused” thread creation as proposed in section 4.3.1.2. This conclusion
justifies why we did not reuse and built upon this prior work.

Appendix H

“Quick and dirty” compilation
—Massaging existing technology as a practical approach to code
generation

Abstract

This appendix complements chapter 6 and details how we implemented code gener-
ation from source code to the new target architecture. To achieve this, we encapsulated
an existing C compiler unchanged between a context-free source-to-source transformer
and a post-processor on the assembly source. We then encapsulated the entire compila-
tion pipeline within a new user-facing command, which we call “slc,” with command-
line semantics similar to GNU CC’s “gcc” driver.

Contents
H.1 Thread programs and “global” channels . 294
H.2 Multiple channel endpoints . 298
H.3 “Shared” channel endpoints . 301
H.4 Bulk creation . 302
H.5 Sequential schedule . 309
H.6 Floating-point channels . 309
H.7 Declarations & separate compilation . 312
H.8 Extending bulk creation . 312
H.9 Support for function calls . 312
H.10 Resulting compilation chain . 315

293

294 APPENDIX H. APPROACH TO CODE GENERATION

1 . globl f oo
2 . ent f oo
3 . registers 1 0 3 0 0 0
4 f oo :
5 ldpc $ l2
6 ldah $l2 , 0 ($ l 2) ! gpdisp ! 1
7 lda $l2 , 0 ($ l 2) ! gpdisp ! 1 # $ l2 := GP
8 ldq $l1 , a ($ l 2) ! l i t e r a l # $ l1 := &a
9 ldq $l1 , 0 ($ l 1) # $ l1 := a
10 swch
11 s4addq $l0 , $l1 , $ l 0 # $ l0 := &(a [i])
12 swch
13 s t l $g0 , 0 ($ l 0) # a [i] := x
14 end
15 . end f oo

Listing H.1: Hand-crafted thread program.

1 extern int ∗ a ;
2 void f oo (int i , int x) {
3 a [i] = x ;
4 }

Listing H.2: Hand-crafted C code.

H.1 Thread programs and “global” channels

We started by observing that besides the machine interface features directly related to
multithreading, the machine code executed by a logical thread is identical to the machine
code that would be executed by a procedure on a legacy architecture with the same ISA
substrate. We thus conjectured that an existing code generator for the underlying ISA would
be able to generate valid code for the “body” of thread programs on our architecture.

To test this conjecture, we considered random C patterns, then hand-crafted their valid
representation as a thread program in assembly code. Separately, we compiled the C code
with a regular (legacy) C compiler towards the same ISA. Then we compared the results.

As an example, let us consider the assignment “a[i] = x” where “a” is declared in the global
scope, “i” is the logical thread index and “x” is a parameter. A valid enclosing thread program
in assembly code is expressed in listing H.1. In this example, the “.registers” directive
indicates 1 “global” channel endpoint and 3 private (local) registers, as per sections 4.3.3
and 4.8.1. The first instruction loads the program counter in register $l2. The next two
instruction load the GP pointer into register $l2 (cf. [Foua] for information about GP-based
addressing on the Alpha ISA). The next “ldq” instruction loads the address of pointer
“a” using the GP pointer, and the next “ldq” instruction loads “a” itself. Then the array
is accessed as expected, using the thread index preloaded in $l0 as per section 4.3.2.3.
The “swch” and “end” annotations indicate a fetch switch hint and thread termination,
respectively (cf. sections 4.4 and 4.8.1).

We then wrote the C code in listing H.2 and compiled it to Alpha assembly using the
GNU C compiler. The result is shown in listing H.3. When comparing this result with

H.1. THREAD PROGRAMS AND “GLOBAL” CHANNELS 295

1 . globl f oo
2 . ent f oo
3 f oo :
4 ldah $29 , 0 ($27) ! gpdisp ! 1
5 lda $29 , 0 ($29) ! gpdisp ! 1
6 ldq $1 , a ($29) ! l i t e r a l
7 ldq $1 , 0 ($1)
8 s4addq $16 , $1 , $1
9 s t l $17 , 0 ($1)
10 ret $31 , ($26) ,1
11 . end f oo

Listing H.3: Alpha assembly generated using GNU CC.

Alpha
assembly

code

GCC for Alpha
(standard)

Post-
processor

(new)

Processed
(MT)

assembly

Assembler with
extensions

(previous work)

Figure H.1: Position of the assembly post-processor in the tool chain.

listing H.1, the following differences appear: the hand-crafted version contains “.registers”
and “ldpc,” whereas the compiled version contains “ret” and a different use of register names.
Otherwise, the instruction order and data flow are similar (the same in this example).

This similarity of structure persisted across most code fragments we exercised in this
way. This allowed us to derive the minimal set of transformations needed to obtain the
valid microthreaded assembly from the output of GNU CC:

1. insert “.registers” before the start of the function;
2. substitute the register names to match the structure of the thread register window;
3. insert “.ldpc” before the “ldah/lda” pair;
4. remove “ret” at the end, replace with “end” (end thread);
5. add “swch” where appropriate.

The 3 latter steps can be automated on the assembly text without interacting with the
originating compiler. We did so by implementing a post-processor, inserted between the code
generator from GNU CC and the assembler program, as depicted in fig. H.1. To add “swch,”
we simply performed a definition-use analysis on the data flow of the assembly instruction
operands, and placed “swch” after every instruction that may consume the output of a long-
latency operation (e.g. the first instruction downstream of a memory load, FP operation,
etc.)

Inserting “.registers” and translating the register names using a static translation table
was possible in the post-processor as well, however this needs to know the desired thread
interface. The thread interface is not expressed in the GNU CC output using the source in
listing H.2. Also, we needed to ensure that the register name corresponding for the “global”
channel endpoint would not be used by the code generator for other computations. Finally,
we noticed that the “ret” instruction was often preceded by frame adjustments which are
unnecessary in a thread program.

296 APPENDIX H. APPROACH TO CODE GENERATION

1 extern int ∗ a ;
2 sl_def (foo , int , x) {
3 sl_index (i) ;
4 a [i] = x ;
5 }
6 sl_enddef

Listing H.4: C code with strategically placed macro uses.

1 #define sl_index (IdxName) long IdxName = __mt_index
2 #define sl_def (FunName , Arg1Type , Arg1Name) \
3 void FunName(void) { \
4 register long __mt_index __asm__("$28") ; \
5 register Arg1Type Arg1Name __asm__("$1") ; \
6 __asm__ __volatile__(" . r e g i s t e r s ␣1␣0␣0␣0␣0␣0") ;
7 #define sl_enddef }

Listing H.5: Macro definitions for thread programs.

We automated the translation as follows. First we re-expressed the code from listing H.2
as depicted in listing H.4, hiding the function header and footer behind specially-named pre-
processor macros. Then we implemented a helper file sl_support.h with the definitions
from listing H.5. (Note that we use names prefixed with a double underscore “__” to void
conflicts with existing identifiers in C code, cf. [II99, 7.1.3§1] and [II11b, 7.1.3].)

Then we needed to manage register renaming.
By investigating the GNU CC code generation back-end, we discovered that register

allocation is performed in two passes: first all candidate variables are assigned to pseudo-
registers, trying to minimize the number of pseudo-registers used, then the pseudo-registers
are assigned to machine register names from a pool, in a fixed order. In other words, the
implementation is such that a function that needs N different registers will always use the
N first candidates in the allocation order. For this ISA target, the allocation order is 1, 2,
3, 4, 5, 6, 7, 8, 22, 23, 24, 25, 28, 0, 21, 20, 19, 18, 17, 16, 27, 9, 10, 11, 12, 13, 14, 26, 15
(REG_ALLOC_ORDER in gcc/config/alpha/alpha.h).

We used this newly gained knowledge as follows. First we excluded the first 12 regis-
ters of the allocation order using the command-line option “-ffixed-$reg” [Frec], in order
to “make room” for inter-thread channel endpoints. We also compiled with “-include
sl_support.h” to automatically prepend listing H.5 to the pre-processing unit:

alpha-linux-gnu-gcc -ffixed-$1 -ffixed-$2 \
-ffixed-$3 -ffixed-$4 -ffixed-$5 \
-ffixed-$6 -ffixed-$7 -ffixed-$8 \
-ffixed-$22 -ffixed-$23 -ffixed-$24 \
-ffixed-$25 \
-include sl_support.h -O2 test.c -S

The GNU CC output with these options is given in listing H.6. As desired, the name
“$1” is only used in its role as a channel endpoint. The temporary variables are assigned

H.1. THREAD PROGRAMS AND “GLOBAL” CHANNELS 297

1 . globl f oo
2 . ent f oo
3 f oo :
4 ldah $29 , 0 ($27) ! gpdisp ! 1
5 lda $29 , 0 ($29) ! gpdisp ! 1
6 . registers 1 0 0 0 0 0
7 ldq $0 , a ($29) ! l i t e r a l
8 ldq $0 , 0 ($0)
9 s4addq $28 , $0 , $28
10 s t l $1 , 0 ($28)
11 ret $31 , ($26) ,1
12 . end f oo

Listing H.6: Externally instrumented Alpha assembly.

Register name used by GNU CC $1 $2 $3 $4 $5 $6
Standard alias/role $t0 $t1 $t2 $t3 $t4 $t5
Substituted name $g0/$d5 $g1/$s5 $g2/$d4 $g3/$s4 $g4/$d3 $g5/$s3
Register name used by GNU CC $7 $8 $22 $23 $24 $25
Standard alias/role $t6 $t7 $t8 $t9 $t10 $t11
Substituted name $g6/$d2 $g7/$s2 $g8/$d1 $g9/$s1 $g10/$d0 $g11/$s0
Register name used by GNU CC $28 $0 $21 $20 $19 $18
Standard alias/role $at $rv $a5 $a4 $a3 $a2
Substituted name $l0 $l1 $l2 $l3 $l4 $l5
Register name used by GNU CC $17 $16 $27 $9 $10 $11
Standard alias/role $a1 $a0 $pv $s0 $s1 $s2
Substituted name $l6 $l7 $l14 $l8 $l9 $l10
Register name used by GNU CC $12 $13 $14 $26 $15 $29
Standard alias/role $s3 $s4 $s5 $ra $fp $gp
Substituted name $l11 $l12 $l13 $l15 $l16 $l17
Register name used by GNU CC $30 $31
Standard alias/role $sp $31
Substituted name $l18 $31

Table H.1: Substitution table for register names.

to register names past the reserved range (“$28”, “$0”). The “.registers” directive is present,
albeit not at the right position.

To refine the output, we then added the following steps in the post-processor:

1. substitute the register names using table H.1;
2. find the highest local register name actually used;
3. pull the inserted “.registers” directive at the top of the function definition and replace

its 3rd parameter by the index of the highest local register name.

The result of these steps on listing H.6 is given in listing H.7. This is a valid thread
program, which can be run on the new architecture.

However, some extra effort is required. As we can see in the edited assembly, as a special
case in the allocation strategy outlined above, the special GP pointer is always assigned
to “$29.” The result of the substitution thus always uses the name “$l17” if the original
code needed GP, even though the thread program only needs 3 private registers for the
computation. This is unsatisfactory, because the machine interface strongly suggests to

298 APPENDIX H. APPROACH TO CODE GENERATION

1 . globl f oo
2 . ent f oo
3 . registers 1 0 18 0 0 0
4 f oo :
5 ldpc $ l17
6 ldah $l17 , 0($ l17) ! gpdisp ! 1
7 lda $l17 , 0($ l17) ! gpdisp ! 1
8 ldq $l1 , a ($ l17) ! l i t e r a l
9 swch
10 ldq $l1 , 0 ($ l 1)
11 s4addq $l0 , $l1 , $ l 0
12 swch
13 s t l $g0 , 0 ($ l 0)
14 end

Listing H.7: Automatically edited Alpha assembly.

1 . globl f oo
2 . ent f oo
3 . registers 1 0 3 0 0 0
4 f oo :
5 ldpc $ l2
6 ldah $l2 , 0($ l 2) ! gpdisp ! 1
7 lda $l2 , 0($ l 2) ! gpdisp ! 1
8 ldq $l1 , a ($ l 2) ! l i t e r a l
9 swch
10 ldq $l1 , 0 ($ l 1)
11 s4addq $l0 , $l1 , $ l 0
12 swch
13 s t l $g0 , 0 ($ l 0)
14 end

Listing H.8: Edited Alpha assembly with fewer used local registers.

reduce the number of effective private registers required by a thread program (sections 3.3.3
and 4.3.3). To address this, we add a “compression” algorithm to the post-processor. This
algorithm iterates through all used local register names, and for each name it tries to find
another name with a lower index which is not yet used. If such a name is found, the name is
substituted throughout. This compression occurs before the register count in “.registers” is
computed. With this algorithm, we obtain the final output in listing H.8. This is identical
to the hand-crafted version from listing H.1: we succesfully compiled a thread program,
without changes to the substrate code generator in GNU CC.

H.2 Multiple channel endpoints

The previous mechanism relies on a C pre-processor macro to inject the desired thread
interface, expressed by macro arguments, in the source code as variable declarations and the
“.registers” directive. Since the C pre-processor cannot compute functions of the number of

H.2. MULTIPLE CHANNEL ENDPOINTS 299

1 #define s l_def1 (FunName , Type1 , Name1)
2 void FunName(void) { \
3 register long __mt_index __asm__("$28") ; \
4 register Type1 Name1 __asm__("$1") ; \
5 __asm__ __volatile__(" . r e g i s t e r s ␣1␣0␣0␣0␣0␣0") ;
6 #define s l_def2 (FunName , T1 , N1 , T2 , N2) \
7 void FunName(void) { \
8 register long __mt_index __asm__("$28") ; \
9 register T1 N1 __asm__("$1") ; \
10 register T2 N2 __asm__("$2") ; \
11 __asm__ __volatile__(" . r e g i s t e r s ␣2␣0␣0␣0␣0␣0") ;
12 #define s l_def2 (FunName , T1 , N1 , T2 , N2 , T3 , N3) \
13 void FunName(void) { \
14 register long __mt_index __asm__("$28") ; \
15 register T1 N1 __asm__("$1") ; \
16 register T2 N2 __asm__("$2") ; \
17 register T3 N3 __asm__("$3") ; \
18 __asm__ __volatile__(" . r e g i s t e r s ␣3␣0␣0␣0␣0␣0") ;
19 /∗ . . . and so on . ∗/

Listing H.9: Macro definitions necessary for different interface arities.

Alpha
assembly

code

gcc -S
(compile)

Post-
processor

Code
transformer

(new)

Transformed
preprocessed

source

gcc -E
(preprocess)

Preprocessed
source

Processed
(MT)

assembly

Figure H.2: Position of the code transformer in the tool chain.

macro arguments, this approach would require multiple macro definitions to support more
than one channel endpoint, as in listing H.9.

While this approach is conceptually sound, it is technically impractical: for any set of
macros the effective number of thread channels supported is limited by the largest macro
definition. We considered instead that a dynamically computed expansion of the macro
would be a more robust, future-proof approach. To achieve this, we inserted a call to
M4 [KR77] as a code transformer between the pre-processing and translation phases of the
C compiler, as depicted in fig. H.2, and we defined our “sl_” macros using M4.

While implementing the code transformer, we found that the implementation would
be simplified if there was a syntactic unit around the pair “(type, name)” for each thread
channel. We did so by extending the syntax definitions with a new form “sl_parm(Type,
Name).”

With this setup, we are able to compile thread programs with multiple channel endpoints,
e.g. listing H.10, to valid assembly output, e.g. listing H.11 (the comments on the right side
of the generated assembly have been manually inserted to explain the result).

300 APPENDIX H. APPROACH TO CODE GENERATION

Side note H.1: About the avoidance of a C syntax parser.
Although we could have reused an existing comprehensive code transformation infrastructure able to under-
stand the C syntax and semantics, we deliberately avoided doing so for the following practical reasons:

• overhead: the entry cost of learning about and mastering the existing tool seemed large given the
relative simplicity of our approach;

• test cycles: the existing tools we found (e.g. CIL [NMRW02]) required separate build and execution
steps to use; we thus deemed them inappropriate for the agile development style we wished to use;

• simplicity: since the syntax substitutions could be implemented in a context-free manner, any error
could be easily traced to its origin by looking at the result of the substitution; with a structured tool
instead, one would need to scan through a graph or tree of abstract representation to find the origin
of errors.

As the story goes, we ended up implementing most the code transformer with Python [Foub] (instead of M4)
to simplify the expression of the transformations. However, throughout our research the tool could perform
context-free syntax substitutions. Our major goal, which was to avoid knowledge of the potential syntax
extensions of the underlying C compiler, while keeping the ability to propagate them fully from input to
output, was achieved this way.

Side note H.2: Preservation of line number markers in M4.
When adding M4 to the processing chain, we had to modify M4 to understand the line number markers added
during the initial C pre-processing step (“#line N ”). This is necessary because macro expansion in M4 may
add or remove lines from the pre-processed text. Without extra support from M4, a discrepancy could appear
between the line markers originally inserted by the C pre-processor and the source code after processing by
M4, which would in turn render any subsequent error messages during compilation meaningless.
We performed this change in GNU M4. The change was minimal (less than 20 lines of code modified); it
was submitted to the GNU M4 developers and is pending acceptance in the main GNU M4 distribution.

1 sl_def (s ca l , sl_parm(int ∗ , b) ,
2 sl_parm(const int ∗ , a) ,
3 sl_parm(int , c)) {
4 sl_index (i) ;
5 b [i] = a [i] ∗ c ;
6 }
7 sl_enddef

Listing H.10: Code using multiple channel endpoints.

1 . globl s c a l
2 . ent s c a l
3 . registers 3 0 2 0 0 0 # 3 chans , 2 l o c a l r eg s
4 s c a l :
5 s4addq $l0 , 0 , $ l 0 # $ l0 := index ∗ 4
6 addq $g1 , $l0 , $ l 1 # $ l1 := a + index ∗4 (= &a [i])
7 addq $g0 , $l0 , $ l 0 # $ l0 := b + index ∗4 (= &b [i])
8 ld l $l1 , 0 ($ l 1) # $ l1 := a [i]
9 mull $l1 , $g2 , $ l 1 # $ l1 := a [i] ∗ c
10 swch
11 s t l $l1 , 0 ($ l 0) # s t o r e int to b [i]
12 swch
13 end
14 . end s c a l

Listing H.11: Generated assembly source for the “scal” thread program.

H.3. “SHARED” CHANNEL ENDPOINTS 301

H.3 “Shared” channel endpoints

To implement “shared” channel endpoints (section 4.3.3.3), we could use register names
from the same reserved block of 12 names. However, a new difficulty arised: there are
now two endpoints per channel, one “incoming” and “outgoing.” Meanwhile, we wanted
to keep the general look and feel of the original language proposal, and allow users to
define a single name to designate both. We did this as follows. First we defined a new form
“sl_shparm(Type,Name)” which populates the 2nd parameter to “.registers” and generates
two additional declarations at each use in the C function header, for example:

1 register Type __mti_Name __asm__("$24") ;
2 register Type __mto_Name __asm__("$25") ;

Then we defined two other forms as follows:

1 sl_getp (Name)
2 → (__mti_Name)
3 sl_setp (Name ,V alue)
4 → do { __mto_Name = (V alue) ; } while (0) ;

(The use of “do...while(0)” ensures that the new construct can only be used in the syntax
where a C statement is expected.)

While experimeting with this new form, we ran into two issues, related to the ability
of the substrate GNU CC code generator to track aliases through assignments, which is
otherwise a desirable optimization. The first issue is illustrated by the following sequence:

1 int t , u ;
2 t = sl_getp (s) ;
3 sl_setp (s , t +1);
4 int u = t ∗ t ;

Without further attention, this would be translated to:

1 lda $l0 , 1($31) # $ l0 := 1
2 addl $d0 , $l0 , $s0 # $s0 := $d0 + 1
3 mull $d0 , $d0 , $ l 0 # $ l0 := $d0 ∗ $d0

In other words, the code generator tracks that “t” is an alias for “__mti_Name” and reuses
the same register name beyond “sl_setp.” This is incorrect in our setting, as explained in
side note G.2. To address this, it suffices to indicate that any use of “sl_setp” also clobbers
“__mti_Name,” to force “t” to alias a copy beyond that point. We do this as follows:

1 sl_setp (Name ,V alue)
2 → do {
3 __mto_Name = (V alue) ;
4 __asm__ __volatile__("#nothing "
5 : "=r " (__mti_Name)
6 : " r " (__mto_Name)) ;
7 } while (0) ;

As per [Frea] this syntax ensures that any prior alias to “__mti_Name” cannot use the
original register name any more.

Then we experienced another issue: some C expressions would cause the target of an
assignment to be assigned multiple times. For example:

302 APPENDIX H. APPROACH TO CODE GENERATION

1 sl_setp (s , x ? (x − 1) : 0) ;

would be compiled to:

1 subl $l0 , 1 , $s0 # $s0 := $ l0 − 1
2 cmoveq $l0 , 0 , $s0 # i f $ l0=0 then $s0 :=0

This is incorrect because each output to an outgoing channel is a synchronizing event and
only the final result should be visible by the sibling thread. We addressed this by extending
the definition of “sl_setp” as follows:

1 sl_setp (Name ,V alue)
2 → do {
3 __typeof__(__mto_Name) __tmp_set = (V alue) ;
4 __asm__ __volatile__("mov␣%4,␣%0"
5 : "=r " (__mto_Name) ,
6 "=r " (__mti_Name)
7 : "0" (__mto_Name) ,
8 "1" (__mti_Name) ,
9 " r " (__tmp_set)) ;
10 } while (0) ;

With this construct, the value to output to the outgoing “shared” endpoint is always
constructed in a local synchronizer before the final “mov” instruction effects the output.
Note how we use “typeof” to define a temporary variable of the right type. Although we
could have defined a parameter type lookup table in the code transformer, which would
“remember” throughout a thread program body the type of each channel endpoint, this
would fail to handle the following source:

1 typedef long mytype ;
2 sl_def (foo , sl_shparm(mytype , x)) {
3 typedef char mytype [1 0 0 0] ;
4 sl_setp (x , sl_getp (x)+1);
5 }

In this example the name “mytype” is changed to designate a different type within the
function body, and thus after the function header. This new definition would be invisible
to the code transformer because it appears outside of one of our constructs. If we would
reuse the name “mytype” textually in the expansion of “sl_setp,” the code would become
invalid. With “typeof” we ensure that the original definition type is used.

Finally, for symmetry, we then renamed the previous “sl_parm” construct for “global”
channels to “sl_glparm” and we ensured that it declares variables of the form “__mti_Name”
so that “sl_getp” can be used to access them.

With this in place, we are able to compile listing H.12 to listing H.13, which is a valid
thread program for the new architecture.

H.4 Bulk creation

H.4.1 Code generation for “fused” creation

We cover first code generation for “fused” creation styles (section 4.3.1.2), as this was his-
torically the first interface available.

H.4. BULK CREATION 303

1 sl_def (innerprod , sl_glparm (int ∗ , a) ,
2 sl_glparm (int ∗ , b) ,
3 sl_shparm(int , sum))
4 {
5 int∗ a = sl_getp (a) ;
6 int∗ b = sl_getp (b) ;
7 sl_index (i) ;
8 sl_setp (sum , a [i] ∗ b [i] + sl_getp (sum)) ;
9 }
10 sl_enddef

Listing H.12: Source code for the “innerprod” thread program.

1 . globl innerprod
2 . ent innerprod
3 . registers 2 1 2 0 0 0
4 innerprod :
5 s4addq $l0 , 0 , $ l 0 # $ l0 := i ∗ 4
6 addq $g1 , $l0 , $ l 1 # $ l1 :=&b [i]
7 swch
8 addq $g0 , $l0 , $ l 0 # $ l0 :=&a [i]
9 swch
10 ld l $l1 , 0 ($ l 1) # $ l1 :=b [i]
11 ld l $l0 , 0 ($ l 0) # $ l0 :=a [i]
12 swch
13 mull $l1 , $l0 , $ l 0 # $ l0 :=a [i]∗b [i]
14 swch
15 addl $l0 , $d0 , $ l 0 # $ l0 :=a [i]∗b [i]+$d0
16 swch
17 mov $l0 , $s0
18 end

Listing H.13: Generated assembly for the “innerprod” thread program.

As described in section 4.3.1, bulk creation is controlled at the machine interface via a
sequence of “allocate,” “set” configuration operation and one of the “create” operations. To
follow the look and feel of the original language proposal, we encapsulated this sequence
behind a single construct, given in listing H.14.

We use the register constraint “rI” because the configuration instructions accept both an
immediate constant or a register, and the code generator will choose the form that entails the
least number of instructions. We use a counter in the code transformer to auto-generate a
different value forN at every occurrence of “sl_createsync,” to avoid duplicate declarations
of “__mt_fid.”

With this in place, we can compile listing H.15 to listing H.16.
Also, we use a condition in the code transformer to avoid emitting one of the configuration

instruction if the corresponding parameter is omitted in the form “sl_createsync.” For
example, our construct allows us to compile listing H.17 to listing H.18.

The next step concerns setting up communication endpoints with the created family. In
the hardware implementations we have used, fused creation is always used with “hanging”

304 APPENDIX H. APPROACH TO CODE GENERATION

1 sl_createsync (Start , Limit , Step , Block , Fun)
2 →
3 long __mt_fidN ;
4 __asm__ __volatile__(" a l l o c a t e ␣%0" : "=r " (__mt_fidN)) ;
5 __asm__(" s e t s t a r t ␣%0,␣%2"
6 : "=r " (__mt_fidN) : "0" (__mt_fidN) , " r I " (Start)) ;
7 __asm__(" s e t l im i t ␣%0,␣%2"
8 : "=r " (__mt_fidN) : "0" (__mt_fidN) , " r I " (Limit)) ;
9 __asm__(" s e t s t e p ␣%0,␣%2"
10 : "=r " (__mt_fidN) : "0" (__mt_fidN) , " r I " (Step)) ;
11 __asm__(" s e tb l o ck ␣%0,␣%2"
12 : "=r " (__mt_fidN) : "0" (__mt_fidN) , " r I " (Block)) ;
13 __asm__ __volatile__(" c r e i ␣%0,␣ 0(%1); ␣mov␣%0,␣$31"
14 : : " r " (__mt_fidN) , " r " (Fun))

Listing H.14: Prototype “create” construct.

1 sl_def (foo) { } sl_enddef
2 sl_def (bar) {
3 sl_createsync (1 , 2 , 3 , 4 , foo) ;
4 } sl_enddef

Listing H.15: Example use of “createsync.”

synchronizer mappings (section 4.3.3.3). As per section 4.8.2, with such mappings the
“setregs” instruction must specify static offsets in the creating thread’s register window
where the endpoints must be set up. Also, these endpoints must contain the source values
at the point the “create” instruction is executed. Finally, the endpoints are set up by using
contiguous register names from the first offset indicated by “setregs.”

To implement this, we force the use of specific registers to pass arguments, as detailed in
listing H.19. First we extend the interface of the “sl_createsync” form to accept a variable
number of extra constructs of the form “sl_glarg(Type, Name, V alue).” When G such
constructs are provided, we then declareG local variables named accordingly, placing them in
explicit registers. We choose the explicit register names by applying the reverse substitution
from table H.1 to the new names “$l0...$l(G − 1).” This produces the G first names from
the sequence $28, $0, $21, . . . $26, with the guarantee that the forward substitution will
produce contiguous register names during post-processing.

We then expand the context allocation and family configuration as previously.
Then we assign the values specified in the “sl_glarg” forms to the new local variables.

We place these assignment after the family configuration, instead of directly as initializers
in the variable declarations, in order to preserve the order of side effects in the expressions
passed to “sl_createsync.”

Finally, during creation, we force the new variables to be available in their respective
registers at the point the “create” instruction is emitted. We construct the meta-syntactical
variables “%N ” in the assembly pattern based on the number G of arguments that follow.

For “shared” channels, we extend as detailed in listing H.20. This is a straightforward
extension of listing H.19, using the next S register names in the creating thread’s register

H.4. BULK CREATION 305

1 . globl f oo
2 . ent f oo
3 . registers 0 0 0 0 0 0
4 f oo :
5 nop
6 end
7 . end f oo
8 . globl bar
9 . ent bar
10 . registers 0 0 3 0 0 0
11 bar :
12 ldpc $ l2
13 ldah $l2 , 0($ l 2) ! gpdisp ! 1
14 lda $l2 , 0($ l 2) ! gpdisp ! 1 # $ l2 := GP
15 allocate $ l0 # $ l0 := context id
16 ldq $l1 , bar ($ l 2) ! l i t e r a l # $ l1 := &bar
17 setstart $l0 , 1 # se t s t a r t := 1
18 swch
19 setl imit $l0 , 2 # se t l im i t := 2
20 setstep $l0 , 3 # se t s tep := 3
21 setblock $l0 , 4 # se t block := 4
22 crei $l0 , 0($ l 1) # create , $ l 0 := fu tu r e
23 swch
24 mov $l0 , $31 # wait on $ l0 (sync)
25 end
26 . end bar

Listing H.16: Generated asembly from listing H.15.

1 sl_def (foo , sl_glparm (int , x)) {
2 sl_createsync (, sl_getp (x) , , , bar) ;
3 }

Listing H.17: Example use of “createsync” with omitted parameters.

1 allocate $ l0 # $ l0 := context id
2 ldq $l1 , bar ($ l 2) ! l i t e r a l # $ l1 := &bar
3 setl imit $l0 , $g0 # l im i t := 1 s t th . parm
4 swch
5 crei $l0 , 0($ l 1) # create , $ l 0 := fu tu r e
6 swch
7 mov $l0 , $31 # wait on $ l0 (sync)

Listing H.18: Generated assembly for listing H.17.

306 APPENDIX H. APPROACH TO CODE GENERATION

1 sl_createsync (. . . Fun ,
2 sl_glarg (T1 , N1 , V al1) , . . . sl_glarg (TG , NG , V alG))
3 →
4 long __mt_fidN ;
5 T1 __mta_N1 __asm__("$⟪RevSubst($l0)⟫") ;
6 . . .
7 TG __mta_NG __asm__("$⟪RevSubst($l(G − 1))⟫")
8 /∗ . . . a l l o c a t e and con f i gu r e happen here . . . ∗/
9 __mta_N1 = (V al1) ;
10 . . .
11 __mta_NG = (V alG) ;
12 __asm__ (" s e t r e g s ␣%0,␣ 0 , ␣ 0 , ␣ 0 , ␣0"
13 : "=r " (__mt_fidN) : "0" (__mt_fidN)) ;
14 __asm__ __volatile__(" c r e i ␣%⟪2G⟫ , 0(%⟪2G + 1⟫) "
15 "\n\tmov␣%⟪2G⟫ , $31"
16 : "=r " (__mta_N1) , . . . "=r " (__mta_NG) ,
17 : " r " (__mta_N1) , . . . " r " (__mta_NG) ,
18 " r " (__mt_fidN) , " r " (Fun))

Listing H.19: Support for “global” channel endpoints in “createsync.”

1 sl_createsync (. . . Fun ,
2 sl_sharg (T1 , N1 , V al1) , . . . sl_sharg (TS , NS , V alS))
3 →
4 /∗ d e c l a r a t i on f o r G v a r i a b l e s here . . . ∗/
5 T1 __mta_N1 __asm__("$⟪RevSubst($lG)⟫") ;
6 . . .
7 TS __mta_NS __asm__("$⟪RevSubst($lG + S − 1)⟫")
8 /∗ . . . a l l o c a t e and con f i gu r e happen here . . . ∗/
9 /∗ . . . a l s o ass ignments to 1 s t G channel endpo in t s ∗/
10 __mta_N1 = (V al1) ;
11 . . .
12 __mta_NS = (V alS) ;
13 __asm__ (" s e t r e g s ␣%0,␣ 0 , ␣⟪G⟫ , 0 , 0"
14 : "=r " (__mt_fidN) : "0" (__mt_fidN)) ;
15 __asm__ __volatile__(" c r e i ␣%⟪2(G + S)⟫ , 0(%⟪2(G + S) + 1⟫) "
16 "\n\tmov␣%⟪2(G + S)⟫ , $31"
17 : /∗ G arguments here . . . ∗/ ,
18 "=r " (__mta_N1) , . . . "=r " (__mta_NS) ,
19 : /∗ G arguments here . . . ∗/ ,
20 " r " (__mta_N1) , . . . " r " (__mta_NS) ,
21 " r " (__mt_fidN) , " r " (Fun))

Listing H.20: Extension of listing H.19 for “shared” channels.

H.4. BULK CREATION 307

1 #define N 100
2 int A[N] ;
3 int B[N] ;
4

5 sl_def (innerprod ,
6 sl_glparm (int ∗ , a) ,
7 sl_glparm (int ∗ , b) ,
8 sl_shparm(int , sum)) {
9 int∗ a = sl_getp (a) ;
10 int∗ b = sl_getp (b) ;
11 sl_index (i) ;
12 sl_setp (sum ,
13 a [i] ∗ b [i] + sl_getp (sum)) ;
14 } sl_enddef
15

16 sl_def (kerne l , sl_shparm(int , r e s)) {
17 /∗ we pass A and B v ia thread
18 channe l s to avoid ex t ra i n s t r u c t i o n
19 to load the array address in each
20 thread o f the fami l y . ∗/
21 sl_createsync (, N, , , innerprod ,
22 sl_glarg (int ∗ , ,A) ,
23 sl_glarg (int ∗ , ,B) ,
24 sl_sharg (int , sum , 0)) ;
25 sl_setp (res , sl_geta (sum)) ;
26 } sl_enddef

Listing H.21: Example vector-vector product kernel.

window for the endpoints of “shared” channels. We also add a new form “sl_geta(Name)”
to retrieve the final value produced by the last thread in the family, as follows:

1 sl_geta (Name) → __mta_Name

With these constructs in place, we are able to compile listing H.21 to listing H.22. This
example uses the SPARC ISA, as opposed to the Alpha ISA used in previous examples, to
illustrate the generality of the approach; it is also one of the benchmarks that was eventually
successfully run on the UTLEON3 prototype on FPGA. This implementation uses two
machine instructions “setthread/create” instead of only one “crei,” but the semantics of the
machine interface are otherwise identical.

H.4.2 Code generation with “detached” creation

We cover here the “detached” creation style from section 4.3.1.2.
Here code generation is implified, because the source values of the thread arguments

do not need to be placed in specific (contiguous) registers any more. Instead, the “sl_⨉
arg” constructs now simply expands to a use of the “puts” or “putg” operations for explicit
communication of source channel values.

For bulk synchronization, we then expand to an explicit use of the new “sync” and
“release” operations. The final values of “shared” communication channels are retrieved into
local variables via “gets” between “sync” and “release.”

308 APPENDIX H. APPROACH TO CODE GENERATION

1 . global innerprod
2 . type innerprod , #func t i on
3 . registers 2 1 3 0 0 0
4 innerprod :
5 s l l %tl0 , 2 , %t l 1 ! %t l 1 := i ∗4
6 ld [%tg1+%t l 1] , %t l 2 ! %t l 2 := b [i]
7 ld [%tg0+%t l 1] , %t l 0 ! %t l 0 := a [i]
8 smul %tl2 , %t l0 , %t l 0 ! %t l 0 := a [i]∗b [i]
9 swch
10 add %tl0 , %td0 , %t l 0 ! %t l 0 := a [i]∗b [i]+sum
11 swch
12 mov %tl0 , %ts0 ! %ts0 := a [i]∗b [i]+sum
13 end
14 . s ize innerprod , .− innerprod
15 . global ke rne l
16 . type kerne l , #func t i on
17 . registers 0 1 6 0 0 0
18 ke rne l :
19 allocate %t l 3 ! %t l 3 := context id
20 sethi %hi (A) , %t l 0
21 or %tl0 , %lo (A) , %t l 0 ! %t l 0 := &A[0] (1 st g l .)
22 sethi %hi (B) , %t l 1
23 or %tl1 , %lo (B) , %t l 1 ! %t l 1 := &B[1] (2nd g l .)
24 mov 0 , %t l 2 ! %t l 2 := 0 (1 st sh .)
25 setl imit %tl3 , 100 ! s e t l im i t := 100
26 swch
27 sethi %hi (innerprod) , %t l 5
28 or %tl5 , %lo (innerprod) , %t l 5 ! %t l 5 := &innerprod
29 setthread %tl3 , %t l 5 ! s e t PC := &innerprod
30 create %tl3 , %t l 3 ! create , %t l 3 := fu tu r e
31 swch
32 mov %tl3 , %t l 3 ! wait on $ t l 3 (sync)
33 swch
34 mov %tl2 , %ts0 ! %ts0 := l a s t sh . output
35 end
36 . s ize kerne l , .− ke rne l

Listing H.22: Generated code for listing H.21, using the “fused” creation interface.

H.5. SEQUENTIAL SCHEDULE 309

Detached creation is used in the hardware implementations together with the “separated”
style of synchronizer mappings (section 4.3.3.3), so the restriction described in side note G.2
does not apply any more, which allows us to simplify the definition of “sl_setp” from
Appendix H.3.

With this scheme in place, the translation of listing H.21 yields the code in listing H.23.

H.5 Sequential schedule

As explained in section 6.2.4, our technical approach must enable a sequential schedule of
any construct expressing concurrency. With the constructs introduced so far, we build an
equivalent sequential schedule as follows:

• thread program are replaced by C functions, taking a logical index value as 1st function
parameter;

• family creation via “sl_createsync” is replaced by a loop;
• “global” channel endpoints are replaced by pass-by-value function parameters;
• “shared” channel endpoints are replaced by single pass-by-reference (pointer) function

parameters.

The corresponding syntax expansions are provided in listing H.24. The pre-processor
must keep an environment upon encountering “sl_def” in order to select the expansion of
“sl_getp” in the function body (either direct or via pointer indirection); this is possible
since we can implement data structures in the code transformer. As previously, the variable
declarations at each use of “sl_createsync” must be disambiguated using a counter N
increased at each occurrence of the construct.

H.6 Floating-point channels

Support for floating-point required extra attention because the register names for floating-
point values and operations are different from integer register names.

While it was trivial to reuse the same principle for reserving register names away from
register allocation, and establishing a substitution table based on the register allocation
order in GNU CC (table H.2), integration in the language constructs mentioned so far ran
into an obstacle: it is not possible to infer the actual type of a channel argument/parameter
for the type name provided in the construct.

The specific question to be answered is: given an occurrence of “sl_glparm(Type,
Name)” (or “sl_shparm”), should the expanded text use an integer or floating-point register
name? The naive approach suggests looking at the syntactic form of the Type textual
parameter; however this is inappropriate: if a C typedef name is provided ([II99, 6.7.7],
[II11b, 6.7.8]), the actual type cannot be infered without looking at the semantic context in
the program. Since we wanted to avoid interfering with (or reimplementing) a C compiler
front-end, we decided to sidestep the issue entirely and shadow all the relevant constructs
with a floating-point variant: “sl_glfparm” next to “sl_glparm,” “sl_shfparm” next to
“sl_shparm,” and so on. The other constructs could remain unchanged.

With this extra support in place we were able to successfuly compile code with floating-
point channel types.

310 APPENDIX H. APPROACH TO CODE GENERATION

1 . global innerprod
2 . type innerprod , #func t i on
3 . registers 2 1 3 0 0 0
4 innerprod :
5 s l l %tl0 , 2 , %t l 1 ! %t l 1 := i ∗4
6 ld [%tg1+%t l 1] , %t l 2 ! %t l 2 := b [i]
7 ld [%tg0+%t l 1] , %t l 0 ! %t l 0 := a [i]
8 smul %tl2 , %t l0 , %t l 0 ! %t l 0 := a [i]∗b [i]
9 swch
10 add %tl0 , %td0 , %t l 0 ! %t l 0 := a [i]∗b [i]+sum
11 swch
12 mov %tl0 , %ts0 ! %ts0 := a [i]∗b [i]+sum
13 end
14 . s ize innerprod , .− innerprod
15 . global ke rne l
16 . type kerne l , #func t i on
17 . registers 0 1 6 0 0 0
18 ke rne l :
19 mov 0 , %t l 1 ! %t l 1 := 0
20 allocates %t l 0 ! %t l 3 := context id
21 sethi %hi (innerprod) , %t l 2
22 or %tl2 , %lo (innerprod) , %t l 2 ! %t l 2 := &innerprod
23 setl imit %tl0 , 100 ! s e t l im i t := 100
24 swch
25 crei %tl2 , %t l 0 ! create , %t l 0 := acknowledgement
26 sethi %hi (A) , %t l 2
27 or %tl2 , %lo (A) , %t l 2
28 putg %tl2 , %t l0 , 0 ! send &A to ‘ ‘ global ’ ’ 0
29 sethi %hi (B) , %t l 2
30 or %tl2 , %lo (B) , %t l 2
31 putg %tl2 , %t l0 , 1 ! send &B to ‘ ‘ global ’ ’ 1
32 puts %tl1 , %t l0 , 0 ! send 0 to f i r s t ‘ ‘ shared ’ ’ 0
33 sync %tl0 , %t l 1 ! sync , %t l 1 := fu tu r e
34 mov %tl1 , %t l 1 ! wait on %t l 1
35 swch
36 gets %tl0 , 0 , %t l 1 ! r e t r i e v e l a s t ‘ ‘ shared ’ ’ 0
37 mov %tl1 , %t l 1 ! wait
38 swch
39 release %t l 0 ! release context
40 mov %tl1 , %ts0 ! propagate to next thread
41 end
42 . s ize kerne l , .− ke rne l

Listing H.23: Generated code for listing H.21, using the “detached” creation interface.

H.6. FLOATING-POINT CHANNELS 311

1 sl_def (Name , sl_glparm (TG ,NG) , . . . sl_shparm(TS ,NS) , . . .)
2 →
3 void Name(long __mti , TG NG , . . . TS ∗NG , . . .)
4

5 sl_index (Idx) → long Idx = __mti
6

7 sl_getp (NG) → NG

8 sl_getp (NS) → (∗NS)
9

10 sl_setp (NS , V alue) → do { (∗NS) = (V alue) ; } while (0)
11

12 sl_createsync (Start , Limit , Step , Block , Fun ,
13 sl_glarg (TG ,NG ,VG) , . . .
14 sl_sharg (TS ,NS ,VS) , . . .)
15 →
16 long __mtiN , __mtbN = (Start) , __mtlN = (Limit) , __mtsN = (Step) ;
17 TG NG = (VG) ; . . .
18 TS NS = (VS) ; . . .
19 for (__mtiN = __mtbN ; __mtiN < __mtlN ; __mtiN += __mtsN)
20 Fun(__mtiN , NG , . . . &NS , . . .)
21

22 sl_geta (NS) → NS

Listing H.24: Syntax expansions for a sequential schedule.

Legacy register name $f10 $f11 $f12 $f13 $f14 $f15
Standard alias/role $ft0 $ft1 $ft2 $ft3 $ft4 $ft5
Substituted name $gf0/$df5 $gf1/$sf5 $gf2/$df4 $gf3/$sf4 $gf4/$df3 $gf5/$sf3
Legacy register name $f22 $f23 $f24 $f25 $f26 $f27
Standard alias/role $ft6 $ft7 $ft8 $ft9 $ft10 $ft11
Substituted name $gf6/$df2 $gf7/$sf2 $gf8/$df1 $gf9/$sf1 $gf10/$df0 $gf11/$sf0
Legacy register name $f28 $f29 $f30 $f0 $f1 $f21
Standard alias/role $ft12 $ft13 $ft14 $frv $frv2 $fa5
Substituted name $lf0 $lf1 $lf2 $lf3 $lf4 $lf5
Legacy register name $f20 $f19 $f18 $f17 $f16 $f2
Standard alias/role $fa4 $fa3 $fa2 $fa1 $fa0 $fs0
Substituted name $lf6 $lf7 $lf14 $lf8 $lf9 $lf10
Legacy register name $f3 $f4 $f5 $f6 $f7 $f8
Standard alias/role $fs1 $fs2 $fs3 $fs4 $fs5 $fs6
Substituted name $lf11 $lf12 $lf13 $lf15 $lf16 $lf17
Legacy register name $f9 $f31
Standard alias/role $fs7 $f31
Substituted name $lf18 $f31

Table H.2: Substitution table for FP register names.

312 APPENDIX H. APPROACH TO CODE GENERATION

H.7 Forward declarations, separate compilation and visibility

Another requirement was support for separate compilation. Provision for this in the C
language exists through the notion of visibility, controlled via the keywords “extern” and
“static” (or their absence), and forward declarations. Like thread functions and objects, we
must allow the source code to control the visibility of thread programs and express forward
declarations.

We enabled this in two steps:

1. we added an additional positional parameter to the “sl_def” construct where the
word “static” can be expressed optionally, in which case it is injected accordingly
in the expansion. The new form then becomes “sl_def(FunName, V isibilityopt,
Channels . . .opt)”;

2. we added a new construct “sl_decl” which accepts the same positional parameters as
“sl_def” and expands to a declaration (without a body).

Later on, we found out that we needed a different textual expansion for declarations
of thread programs, and declarations of pointers to thread programs. We introduced an
extra form “sl_decl_fptr” for this purpose, again with the same positional parameters as
“sl_def.” Although there is no additional associated conceptual difficulty, we mention it
here for completeness.

H.8 Extending bulk creation

At a language level, two features outside of the scope of this appendix are also supported
with the “sl_createsync” construct: the specification of a place identifier, which is a named
processing resource where the work should be executed (cf. chapter 11 and Appendix E),
and extra creation specifiers for controlling non-function aspects of code generation (chap-
ter 10). The final syntax interface settled upon was “(, Placeopt, Startopt, Limitopt, Stepopt,
Blockopt, Specifiersopt, FunName, Channels . . .opt)” with an initial empty position re-
served for custom compiler extensions.

As an attempt to more closely related to the original language proposal (Appendix G),
we also split the “sl_createsync” construct into two syntax elements “sl_create” and
“sl_sync,” bound into a single syntax rule as explained later in Appendix I.5.8.1. Between
these two, a new form “sl_seta” symmetric to “sl_geta” and “sl_setp” presented above
can provide source values to the channel endpoints. Otherwise, all the positional parameters
to “sl_createsync” were retained in the definition of “sl_create.”

Of course, the syntactic substitution of the bulk creation operations for the “fused”
interface, or as a C loop for the sequential version, must occur at the point “sl_sync” is
expressed, not earlier. This is because the source values for channel endpoints may not fully
determined prior to this point. This is not further discussed here, as there is no additional
technical difficulty involved; for more details cf. the source code of the produced tools, or
fig. 6.1 for a summary.

H.9 Support for function calls

Another layer of implementation efforts were dedicated to supporting regular function and
procedure calls. These efforts occurred beyond the mandatory provision of private stacks to
threads, discussed separately in chapter 9.

H.9. SUPPORT FOR FUNCTION CALLS 313

The first aspect was to determine how to compile separately a regular C function that
can be called from different thread programs. The problem that needed to be addressed is
that the register window layout is specific to each thread, and determined by the register
configuration word (section 4.3.3.2), whereas the C function code must refer to the same
register names in all use contexts. To allow a single code representation for a C function
that could be invoked from two threads with different register layout, we had to:

1. constrain the layout of the visible window (section 4.3.3.4) so that the register names
in the local synchronizer region would be the same across all threads; this is achieved
by mapping the private register space always at the start of the ISA window, i.e. the
logical names “$l0...$lN ” must map to the machine names “$0...$N ,” instead of $⟨G+
S⟩...$⟨G + S +N⟩” as with e.g. the original G-D-S-L layout.

2. apply different post-processing stages to the assembly code of regular C functions than
those applied to thread programs, to account for different patterns of register uses;
this was achieved by sorting generated assembly codes prior to post-processing based
on the presence of the “.registers” directive.

Once function calls can be generated, a situation can occur where a function must save
callee-save registers [JR81] before using them for computations. For this purpose the code
generator would issue spills (stores to stack) in the function code prior to any other use of
these registers. However if the function is called from a thread program, and the callee-save
registers are not assigned a value in the thread program prior to the function call, it is
possible that some of the registers are initially in the “empty” state (section 4.6.1.2), which
would incur a deadlock when the spill is reached during execution.

To avoid this problem, we initially modified the post-processor to issue instructions to
force all callee-save registers to a non-empty state at the start of a thread program. However,
this resulted in a mandatory overhead to fill all the callee-save registers (26 instructions with
both the Alpha and SPARC substrate ISAs), even when the registers may end up not being
used at all (in most cases it is not possible to determine whether the registers are used or
not, since the called function is usually compiled separately). Later on, we negotiated a
change to the machine interface semantics instead, to mandate that all local registers are
guaranteed upon thread start-up to be readable. This allowed us to avoid the overhead in
software.

On a related note, saving and restoring callee-save registers is not necessary in the top-
level thread function, since its private register window is dedicated; the post-processor was
thus enhanced to remove these when they could be detected.

Finally, when targeting code for the SPARC substrate ISA, we had to address the concep-
tual conflict between SPARC’s sliding register windows [MAG+88] and our machine interface,
introduced in section 4.5.4. The problem is that the SPARC machine interface guarantees
that the save and restore instructions will always obtain a “fresh” set of local registers
for a function, possibly at the expense of an overflow trap if the window pointer reaches an
existing frame around in the register file. Since the implementations we had access to do not
implement SPARC’s sliding windows and overflow traps, the save and restore instructions
cannot be used at all in thread programs and all the function codes they call indirectly.
Instead, we must translate all occurrences of “save” and “restore” in the assembly source
using the substitutions in listings H.25 and H.26. As an optimization, we also automatically
skip the saving and restoring instructions that target registers otherwise not used in the
current function code.

314 APPENDIX H. APPROACH TO CODE GENERATION

1 save A , B , C
2 →
3 add A , B , %g1
4 std %i0 , [%sp − 0]
5 std %i2 , [%sp − 8]
6 std %i4 , [%sp − 16]
7 std %fp , [%sp − 24]
8 mov %o0 , %i0
9 mov %o1 , %i1
10 mov %o2 , %i2
11 mov %o3 , %i3
12 mov %o4 , %i4
13 mov %o5 , %i5
14 mov %sp , %fp
15 mov %o7 , %i7
16 mov %g1 , C

Listing H.25: Substitution for SPARC’s save.

1 r e s t o r e A , B , C
2 →
3 add A , B , %g1
4 mov %i7 , %o7
5 mov %fp , %sp
6 ldd [%sp − 24] , %fp
7 mov %i5 , %o5
8 mov %i4 , %o4
9 ldd [%sp − 16] , %i 4
10 mov %i3 , %o3
11 mov %i2 , %o2
12 ldd [%sp − 8] , %i 2
13 mov %i1 , %o1
14 mov %i0 , %o0
15 ldd [%sp − 0] , %i 0
16 mov %g1 , C

Listing H.26: Substitution for SPARC’s restore.

H.10. RESULTING COMPILATION CHAIN 315

placeholder:
... -E

(preprocess)

Code
transformer

placeholder:
... -S

(codegen)

Source
(.c)

placeholder:
assemble

placeholder:
link

Memory
image

COMPILATION DRIVER: "slc"

Pre-
processed

source

slc -E

Transformed
source

slc -EE

Raw
assembly
(invalid)

slc -S1

Assembly
(valid)

slc -S

Optimized
assembly

slc -S0

Object
code

slc -c

Assembly
(.s)

Pre-
processed

source
(.i)

Objects
(.o / .a)

placeholder:
syntax

definitions

placeholder:
processing

rules

Post-
processor 1

placeholder:
processing

rules

Post-
processor 2

Target
configuration

slc -b TARGET

Figure H.3: The “slc” compilation pipeline and driver.

H.10 Resulting compilation chain

The resulting tool infrastructure is illustrated in fig. H.3.
Our translation pipeline contains the underlying C pre-processor, our code transformer

in charge of performing context-free syntax substitutions on the C source, the underlying
C code generator, two stages of post-processing on the assembly code, and the assembler
and linker programs. While the previous sections describe only one post-processing stage
implementing all transformations on the assembly source, we actually split up this into two
stages, the latter containing all transforms that are useful to apply to hand-written assembly.
These include the addition of the “swch” annotation, and the removal of family configuration
instruction that use the default values in hardware.

This pipeline is further parameterized by the target architecture, using the driver command-
line parameter “-b”: the choice of the underlying C compiler and pre-processor, which syntax
substitution and post-processing rules should be applied, and which assembler and linker
programs to use can be configured. This way we can use the same tool interface to com-
pile towards various implementations of the new architecture, e.g. to different ISAs, and a

316 APPENDIX H. APPROACH TO CODE GENERATION

Target alias (“-b”) Description
mta New architecture with the Alpha ISA, MGSim, provid-

ing “detached” creation.
mts New architecture with the SPARC ISA, UTLEON3,

providing “fused” creation.
mtsn New architecture with the SPARC ISA, MGSim, pro-

viding “detached” creation.
seqc Sequential execution on the host platform.
hrt Execution with a software concurrency frame-

work [Mat10], providing “detached” creation.
ptl, hls Execution with two other frameworks [vTJLP09,

UvTJ11]; these provide “detached” creation but with
“hanging” synchronizer mappings, so they are treated
as a “fused” creation interface for code generation.

Table H.3: Supported compilation targets at the time of publication of this book.

legacy “host” platform in pure sequential mode, where the post-processing stages are entirely
disabled. A summary of the target configurations we ended up supporting is described in
table H.3.

We also took care of recognizing most of the GNU CC command-line interface and
external semantics. This allowed us to use the new “slc” command as a drop-in replacement,
without changes to existing build systems, when we ported third-party software programs and
libraries. In particular our driver recognizes the common flags “-E” to effect pre-processing
only, “-S” to stop after code generation (but ensuring the assembly source is valid for the
target architecture), and “-c” to stop after producing object code. The extra flags “-EE,”
“-S0” and “-S1” are provided for completeness and ease of troubleshooting the compilation
chain itself.

Appendix I

SL Language specification

Abstract

This appendix describes the SL language introduced in chapter 6 in the style of [II99,
II11b].

Contents
I.1 Prologue . 318
I.2 Terms and definitions . 318
I.3 Conformance . 318
I.4 Environment . 319
I.5 Language . 320
I.6 Library . 332

317

318 APPENDIX I. SL LANGUAGE SPECIFICATION

I.1 Prologue

This appendix contains references to terms, definitions and concepts defined in [II99, II11b],
which should therefore be considered bound to this specification.

I.2 Terms and definitions

The following terms are defined in section 3 of [II99, II11b] and are reused in this specifica-
tion: “argument,” “constraint,” “implementation,” “implementation limit,” “object,” “param-
eter,” “undefined behavior,” “unspecified behavior,” “value.”

The following terms are syntactic / semantic constructs defined in [II99, II11b], section
6, and are reused in this specification: block item, compound statement, constant expres-
sion, conversion, declaration specifier, declaration, definition, expression, function designa-
tor, identifier, linkage, name space, processing environment, scope, side effect, statement,
storage class specifier, storage duration, translation environment, type, type compatibility,
type specifier, universal characters, visibility.

As a clarification to [II99, II11b], we further detail the semantics of C with regards to
objects, storage duration (lifetime), addressability and mutability in Appendix F.

We did not consider the concurrency features in [II11b] as our work predates this speci-
fication. Instead, with [II99] we define the following extra terms:

logical thread a sequential unit of work defined at run-time by a thread program entry
point and a channel endpoint interface definition;

family the set of logical threads defined by the execution of a single create construct; this
corresponds to the definition of “family” in section 7.2.2.2;

logical thread index integer value that uniquely identifies a thread within a family; the
set of logical thread indexes is defined when execution reaches a create construct.

thread program a program suitable for execution by a logical thread;
thread function synonymous to “thread program”.
thread parameter an incoming “global” channel endpoint in a thread program, or a pair

of incoming/outgoing “shared” channel endpoints.
thread argument an outgoing “global” channel endpoint, or a pair of outgoing/incoming

“shared” channel endpoints, in a creating thread respective to the created family.
parameter or argument kind the kind of channel that the parameter or argument end-

point is connected to, either “shared” (daisy-chained between logical threads) or “global”
(from creating thread to all created threads).

thread function prototype the specification of the number, kind and type of thread pa-
rameters in a thread function declaration or definition.

sibling endpoints for an incoming channel endpoint, the outgoing endpoint at the other
side of the channel; for an outgoing channel endpoint, the incoming endpoints at the
other side of the channel.

I.3 Conformance

1 Section 4 from [II99, II11b] applies.

I.4. ENVIRONMENT 319

Side note I.1: About the compatibility of our implementation.
Our implementation of SL is a conforming freestanding implementation as per [II99, 4§6]. Later in our
work we added library features to increase its compatibility as a conforming freestanding implementation
as per [II11b, 4§6] and a conforming hosted implementation as per [II99, II11b], but this support is yet
incomplete. We discuss this further in section 6.4.3.

I.4 Environment

1 SL’s translation and processing environments are defined like C’s environment.
2 Additionally, M4 is run as an additional pre-processor after C pre-processing and before

translation.
3 In the rest of this section, the corresponding clauses from [II99, II11b] apply, unless explicitly

modified or extended.

I.4.1 Program execution

1 [II99, 5.1.2.3§1] and [II11b, 5.1.2.3§1] apply.
2 [II99, 5.1.2.3§2] and [II11b, 5.1.2.3§2] apply with “at certain specified points in the execution

sequence called sequence points [...]” changed to “at certain specified points in the execution
sequence of a thread program, called sequence points [...]” That is to say, we restrict this
clause so that the visibility of side effects is restricted to the rest of the execution of the
same thread program, not concurrent activities.

3 Also, creating or waiting for termination of a family, reading from or writing to inter-thread
channel endpoints, or calling a function that does any of those operations are all side-effects.

4 [II11b, 5.1.2.3§3] applies, insofar as the proposed relations apply to evaluations performed
by logical threads as per our definition in I.2.

5 [II99, 5.1.2.3§3] and [II11b, 5.1.2.3§4] apply.
6 We leave unspecified whether the concept of “signal” exists in SL, and thus whether and how

[II99, 5.1.2.3§4] and [II11b, 5.1.2.3§5] apply.
7 [II99, 5.1.2.3§5–7] and [II11b, 5.1.2.3§6–8] apply.

I.4.1.1 Multi-threaded executions and data races

1 [II11b, 5.1.2.4§1–4] apply.
2 [II11b, 5.1.2.4§5–10] do not apply directly: we discuss support for C’s “atomic objects” and

their synchronizing operations further in chapter 7.
3 [II11b, 5.1.2.4§11–28] apply, insofar as C’s atomic objects are not supported directly, and

the kill_dependency macro is not supported in SL.
4 The abstract machine for SL does not use memory, and thus C’s “objects” as per [II99, II11b]

and Appendix F, for synchronization between threads. Instead, synchronization between
threads, and thus the “inter-thread happens before” relation between actions described in
[II11b, 5.1.2.4§16], is negotiated by programmable devices (dataflow channel endpoints)
that are physically independent from memory. This divergence from [II11b] entails that
operations that write to an object are not necessarily visible to subsequent read operations,
even if the write and read operations are otherwise synchronized. We discuss this further in
chapter 7.

320 APPENDIX I. SL LANGUAGE SPECIFICATION

I.4.2 Translation limits

1 C’s translation limits apply.
2 Also, the implementation shall be able to translate and execute at least one program that

contains at least one instance of every one of the following limits:

• 127 “global” channel endpoint definition in a thread program declaration or definition,
or family creation;

• 1 “shared” channel endpoint pair definition in a thread program declaration or defini-
tion, or family creation;

• 0 levels of syntactic nesting of “sl_create” and “sl_sync” constructs, that is programs
where the program text between the two constructs does not contain further occurrences
of the constructs.

I.5 Language

I.5.1 Notation

1 We will reuse the syntax notation from [II99, II11b].
2 In addition, we will use the symbol “¬” to denote continuation of a syntax pattern on the

following line.

I.5.2 Concepts

I.5.2.1 Scope of identifiers

1 Identifiers can denote what they denote in C ([II99, 6.2.1], [II11b, 6.2.1]);
2 Also, identifiers can denote thread parameters and arguments.
3 Identifiers have the same visibility and scope semantics in SL as they have in C.

I.5.2.2 Linkage of identifiers

1 Linkage is defined in SL as in C ([II99, 6.2.2], [II11b, 6.2.2]).
2 Identifiers that denote channel endpoints have no linkage.

I.5.2.3 Name space of identifiers

1 Name spaces are defined in SL as in C for all identifiers except those that denote channel
endpoints ([II99, 6.2.3], [II11b, 6.2.3]).

2 Identifiers for channel endpoints have a distinct name space from C label names, tags,
members and ordinary identifiers.

3 Also, identifiers that denote thread parameters have a different name space than identifiers
that denote thread arguments.

For example in the following fragment:

1 sl_def (foo , void , sl_glparm (int , x)) {
2 f loat x ;
3 sl_create (, , , , , , foo , sl_glarg (int , x)) ;
4 sl_sync () ;
5 // <−− here

I.5. LANGUAGE 321

6 }
7 sl_enddef

at the location specified by “here,” both the variable “x,” the thread parameter “x” and
the thread argument “x” can be used (the latter two resp. with “sl_getp” and “sl_seta”,
cf. hereafter).

I.5.2.4 Storage duration of objects

1 Storage duration is defined in SL as for C objects ([II99, 6.2.4], [II11b, 6.2.4]), insofar as
[II11b, 6.2.4§4,6.7.1]’s “_Thread_local” storage-class specifier is not supported in SL.

(note that since channel endpoints are not objects, they do not have a storage
duration)

I.5.2.5 Types

1 Types are defined in SL as in C ([II99, 6.2.5], [II11b, 6.2.5]); however the “_Atomic” qualifier
from [II11b, 6.2.5§27] is not supported in SL as discussed in chapter 7.

2 Also, SL adds a new type category: thread function types, which are separate from C’s
function types. A thread function type is characterized by its attributes and the number,
kind (“shared” or “global”) and type of its thread parameters, collectively called its prototype.

3 A thread function type shall not be incomplete.
4 Thread function types can be used for type derivation like function types.
5 Any of C’s scalar types ([II99, 6.2.5§21], [II11b, 6.2.5§21],) can be used to define thread

parameters and arguments1.

We furthermore intendedly leave unspecified whether channels can be defined using any
of C’s other types (arrays, aggregates, functions), pending further research in that direction.

I.5.2.6 Representation of types

1 The representation of types is defined in SL as in C ([II99, 6.2.6], [II11b, 6.2.6]).
(since channel endpoints themselves are not objects, they do not have a repre-
sentation, although the values read from or written to the endpoints do have
a representation)

I.5.2.7 Compatible types and composite types

1 Compatible and composite types are defined in SL as in C ([II99, 6.2.7], [II11b, 6.2.7]).
2 Additionally, compatibility and composition is extended to thread function types. However:

• thread function types and C’s function types are not mutually compatible;
• two thread function types are not compatible if their attributes differ, of if their argu-

ment kind and type differ in any manner when compared one to one in their order of
appearance in the function’s prototype.

1In C, a pointer-to-array type is a scalar type, as well as pointer-to-function.

322 APPENDIX I. SL LANGUAGE SPECIFICATION

I.5.2.8 Alignment of objects

1 [II11b, 6.2.8§1] applies; however the _Alignas keyword is not supported.
2 [II11b, 6.2.8§2–4] apply, insofar as _Alignof and max_align_t are not supported.
3 [II11b, 6.2.8§5–7] apply.

I.5.3 Conversions

1 Conversions are defined in SL as in C ([II99, 6.3], [II11b, 6.3]).
2 Additionally, automatic conversions are extended to thread function types as follows: unlike

C function designators, a thread function designator with type “thread function” is never
promoted automatically to an expression that has type “pointer to thread function.”

I.5.4 Lexical elements

1 Lexical elements are defined in SL as in C ([II99, 6.4], [II11b, 6.4]), insofar as the universal
character names and string literals from [II11b, 6.4.3,6.4.5] are not supported.

2 Additionally:

• all identifiers beginning with “__sl_” and “_sl_” are reserved and cannot be used in
programs;

• the following pre-processor macros have pervasive semantics and must be considered
as keywords (i.e. they must not be redefined, and they can be assumed to have the
same semantics everywhere they appear): sl_def, sl_enddef, sl_create, sl_sync,
sl_shparm, sl_glparm, sl_shfparm, sl_glfparm, sl_glarg, sl_glarg, sl_shfarg,
sl_glfarg, sl_seta, sl_geta, sl_setp, sl_getp, sl_index, sl_decl_fptr, sl_lbr,
sl_rbr, sl_typedef_fptr.

3 Any keyword in C++ [II11a] not listed above is reserved in SL and cannot be used in
programs2.

I.5.5 Expressions

1 Expressions are defined in SL as in C ([II99, 6.5], [II11b, 6.5]), insofar as atomic objects
(discussed above), [II11b, 6.5.1.1]’s generic selection with “_Generic” and [II11b, 6.5.3]’s
alignment operator “_Alignof” are not supported in SL.

2 Additionally, SL introduces thread argument and parameter access expressions.

I.5.5.1 Thread argument and parameter access

Syntax

primary-expression:
. . .
sl_geta (identifier)
sl_getp (identifier)

2We reserve C++ keywords to reserve ourselves the ability to translate SL code to a C++-based substrate
language without running the risk that valid uses of identifiers in the source SL code become invalid uses of
keywords in C++.

I.5. LANGUAGE 323

Constraints

1 The identifier used with sl_geta must be a visible thread argument name (cf. I.5.8.1).
2 The sl_geta expression shall not appear within the create block item list of the create

construct where the thread argument name is defined.
3 The identifier used with sl_getp must be a thread parameter name in the enclosing thread

function.

Semantics

4 Thread argument and parameter access expressions are converted during evaluation to the
value read from the corresponding channel endpoint; they correspond to the r and q̄ opera-
tions from section 7.2.

5 The type of a thread argument or parameter access expression is the declared type of the
channel.

6 Each use of sl_getp generates a side effect (as per [II99, 5.1.2.3§2] and [II11b, 5.1.2.3§2]).
7 Execution passes the first sequence point following an occurrence of sl_getp no earlier than

execution passes the sl_setp or sl_seta statement in the thread where the sibling channel
endpoint is defined.

8 If execution reaches an expression using sl_getp after it has passed a sl_setp statement
using the same thread parameter identifier, the behavior of the program becomes undefined.

(note that the identifiers themselves that denote thread arguments and pa-
rameters are not valid expressions)

I.5.6 Constant expressions

1 Constant expressions are defined in SL as in C ([II99, 6.6], [II11b, 6.6]).

I.5.7 Declarations

1 Any C declarations containing the storage class specifier “typedef,” built upon any of C’s
types (i.e. not thread function types), any C declarations that declare or define an object
or function, and any C declarations that declare a structure, enum or union type are valid
in SL and have the same semantics as in C, insofar as the following features from [II11b] are
not supported (cf. chapter 7):

• [II11b, 6.7.2.4,6.7.3]’s “_Atomic” type specifier and qualifier;
• [II11b, 6.2.4§3,6.7.1]’s “_Thread_local” storage class specifier;
• [II11b, 6.7.4]’s “_Noreturn” function specifier;
• [II11b, 6.7.5]’s “_Alignas” alignment specifier.

2 It is left unspecified here whether an implementation of SL must support [II99, II11b]’s
variable length arrays or variably modified types.

(in [II99] this support was mandatory, but it is now an optional feature ac-
cording to [II11b]. Our implementation makes a “best effort” in this direction
but support for this feature was not thoroughly tested.)

3 Additionally, SL adds new constructs for logical thread index declarations, thread func-
tion declarations, declarations of pointers to thread functions, and type name definitions
for pointer types to thread functions.

We intendedly leave unspecified whether any other of C’s declarations exists in SL.

324 APPENDIX I. SL LANGUAGE SPECIFICATION

I.5.7.1 Logical thread index declarations

Syntax

thread-index-declaration:
sl_index (identifier) ;

declaration:
. . .
thread-index-declaration

Constraints

1 A thread index declaration shall only appear in a thread function body.

Semantics

2 A thread index declaration declare a constant object of unspecified integer type in the
current scope with the given name, whose value during execution is the logical thread index
of the current thread.

I.5.7.2 Thread function declarations

Syntax

thread-function-declaration:
sl_decl (identifier , thread-specifiersopt ¬

[, thread-parameter-list]opt) ;
thread-parameter-list :

thread-parameter-declaration
thread-parameter-declaration , thread-parameter-list

external-declaration:
. . .
thread-function-declaration

(note that this syntax is not suitable for use in a struct-declaration-list)

Semantics

1 A thread function declaration declares a thread function with the specified name and pro-
totype, with external linkage unless the attribute “sl__static” is specified (cf. I.5.7.5).

I.5.7.3 Declarations of pointers to thread functions

Syntax

thread-function-pointer-declaration:
sl_decl_fptr (identifier , thread-specifiersopt ¬

[, thread-parameter-list]opt) ;
declaration:

. . .
thread-function-pointer-declaration

I.5. LANGUAGE 325

(note that this syntax is not suitable for use in a struct-declaration-list)

Semantics

1 A thread function pointer declaration declares a pointer to thread function with the specified
identifier and prototype, with external linkage unless the attribute “sl__static” is specified
(cf. I.5.7.5).

I.5.7.4 Type name definitions for pointer types to thread functions

Syntax

thread-function-pointer-typedef :
sl_typedef_fptr (identifier

[, thread-specifiersopt ¬
[, thread-parameter-list]opt]opt) ; ¬

declaration:
. . .
thread-function-pointer-typedef

(note that this syntax is suitable for use within function bodies)

Semantics

1 A thread function pointer typedef define a typedef name that denotes a pointer to thread
function type with the specified name and prototype.

For example:

1 sl_decl (foo , , sl_glparm (int , x)) ;
2 . . .
3 {
4 sl_typedef_fptr (ptype , , sl_glparm (int , y)) ;
5 ptype p = &foo ;
6 struct { ptype q ; } r ;
7 r . q = p ;
8 }

I.5.7.5 Thread attributes and specifiers

Syntax

1 thread-specifiers:
thread-specifier-item
(thread-specifier-list)

thread-specifier-list :
thread-specifier-item
thread-specifier-list , thread-specifier-item

thread-specifier-item:
thread-specifier

326 APPENDIX I. SL LANGUAGE SPECIFICATION

thread-attribute
thread-specifier :

sl__static
thread-attribute:

(yet undefined)

Semantics

2 The declaration or definition of a thread function can specify attributes and specifiers. At-
tributes are part of the prototype, while specifiers are not.

3 The thread specifier sl__static plays the same role as C’s storage qualifier static on
external declarations.

I.5.7.6 Thread parameter list

Syntax

thread-parameter-list :
thread-parameter-declaration
thread-parameter-list , thread-parameter-declaration

thread-parameter-declaration:
sl_glparm (declaration-specifiers , identifier)
sl_glfparm (declaration-specifiers , identifier)
sl_shparm (declaration-specifiers , identifier)
sl_shfparm (declaration-specifiers , identifier)

Semantics

1 A thread parameter declaration specifies channel endpoints for the thread program. The
forms sl_glparm and sl_glfparm specify an incoming “global” channel endpoint; the forms
sl_shparm and sl_shfparm specify an incoming/outgoing pair of “shared” channel end-
points.

2 The declaration specifiers part of a thread parameter declaration shall not contain a storage
class specifier, nor the type qualifier volatile.

3 The type designated by the declaration specifiers (either directly, or indirectly via the use
of a typedef name) in sl_glparm and sl_shparm shall be an integer type ([II99, 6.2.5§17],
[II11b, 6.2.5§17]).
Note that this includes pointers; as per section 7.3, care must be taken to organize the
consistency of the objects pointed to separately.

4 The type designated by the declaration specifiers in sl_glfparm and sl_shpfarm shall be
either float or double.

I.5.8 Statements and blocks

1 Statements and compound statements are defined in SL as in C ([II99, 6.8], [II11b, 6.8]).
2 Also, SL adds create constructs and outgoing communication statements to C blocks.

I.5. LANGUAGE 327

I.5.8.1 Family creation

Syntax

1 create-construct :
sl_create (, create-parameters , create-specifiersopt , ¬

assignment-expression ¬
[, thread-argument-list]opt) ; ¬
create-block-item-listopt ¬
sl_sync () ;

create-parameters:
assignment-expressionopt , range-parameters

range-parameters:
assignment-expressionopt , assignment-expressionopt , ¬

assignment-expressionopt , assignment-expressionopt

create-specifiers:
create-specifier
(create-specifier-list)

create-specifier-list :
create-specifier
create-specifier-list , create-specifier

create-specifier :
thread-attribute

thread-argument-list :
thread-argument-definition
thread-argument-list , thread-argument-definition

thread-argument-definition:
sl_glarg (declaration-specifiers , identifieropt ¬

[, assignment-expression]opt)
sl_glfarg (declaration-specifiers , identifieropt ¬

[, assignment-expression]opt)
sl_sharg (declaration-specifiers , identifieropt ¬

[, assignment-expression]opt)
sl_shfarg (declaration-specifiers , identifieropt ¬

[, assignment-expression]opt)
create-block-item-list :

create-block-item
create-block-item-list create-block-item

create-block-item:
statement
create-construct

block-item:
. . .
create-construct

2 The syntax form is described as follows: the word “sl_create” followed by an opening
parenthesis, followed by a comma, followed by five optional assignment expressions separated
by (mandatory) commas, followed by an optional create specifier list, followed by a comma,

328 APPENDIX I. SL LANGUAGE SPECIFICATION

Side note I.2: About the syntax of “sl_create” and “sl_sync”.
The proposed syntax fuses the “sl_create” construct with the “sl_sync” construct in a syntactic unit. This
formalizes the fundamental distinction between SL and the original language proposal in Appendix G.
The proposed construct also differs from C statements in that it can only appear in an enclosing block (e.g. a
function body or compound statement), not as a lone statements where these are allowed (e.g. as one branch
of a if statement). This is because it plays both the role of a declaration and a statement, and declarations
are not valid where lone statements are allowed. Also, intuitively, as declaration, the identifiers they define
must be reusable beyond the construct in the enclosing block.
Also, the construct defines a new phrase structure, the create block item list : this differs from C’s block item
list ([II99, 6.8.2], [II11b, 6.8.2]) in that it does not allow interspersed declarations, unless they are contained
in a compound statement.

Side note I.3: About pointers to thread functions.
In C, an expression with type “pointer to function” can be used in a function call expression, and it is
automatically converted to designated the function pointed to. In SL, the thread program expression in
a create construct must designate the thread function directly. To use a pointer to thread function, the
pointer must be explicitly dereferenced with the unary * operator.

followed by an assignment expression, followed by an optional list of comma-separated thread
argument definitions, followed by a closing parenthesis, followed by a semicolon, followed by
an optional create block item list, followed by the word “sl_sync,” followed by an opening
parenthesis, followed by a closing parenthesis, followed by a semicolon.

3 The first five (optional) assignment expressions are called collectively family configuration
expressions and individually the place, start, limit, step, block expressions of the construct.
The sixth assignment expression is called the thread program expression.

4 In the thread argument list, each argument definition contains declaration specifiers, an op-
tional identifier and an optional assignment expression, separated by commas. The optional
identifier is called the argument name and the optional assignment expression is called the
argument initializer.

Constraints

5 Each of the family configuration expressions, when specified, shall have an arithmetic type.
6 The thread program expression must have a thread function type which is compatible with

the thread argument list in the number, kind and type of channel definitions.
7 Each argument initializer shall have a type such that its value may be assigned to an object

with the unqualified version of the type of its corresponding declaration specifier.
8 The argument names shall not be used in any other create construct in the same scope.
9 A goto or switch statement expressed outside a create construct shall not refer to a label

expressed within its create block item list; nor shall a goto or switch statement expressed
within the create block item list refer to a label outside of the create construct.

10 A break or continue statement shall only appear within the create block item list of a
create construct if the entire enclosing loop also appears inside the construct.

11 The return statement shall not be expressed in a create block item list.
(we leave implementation-defined whether any other statements than thread
argument assignments and thread parameter assignments with a single inden-
tifier as right operand are valid in a create block item list)

I.5. LANGUAGE 329

Semantics

12 There is a sequence point after each family configuration expression, after the thread pro-
gram expression, after each argument initializer, before execution passes the “sl_create”
into the inner create block item list, before execution reaches “sl_sync”, and before execu-
tion passes “sl_sync.”

13 If any expression used in the create construct has side effects, they will be effected before
their respective sequence point is passed during execution. This includes initialization values
for thread parameters that are present in the thread argument list.

14 A create construct maps to a c and s actions in the formalism from section 7.2: both are
guaranteed to occur at some point after execution passes “sl_create” into the inner create
block item list, and before execution passes “sl_sync.”

15 As a property of the family composition contract, the create construct defines a set of
executions of the thread program, collectively called a family ; each execution in the family
is guaranteed to start no earlier than when execution in the creating thread passes beyond
the “sl_create” part and into the create block item list (or the “sl_sync” part if the block
item list is not expressed); and execution in the creating thread is guaranteed to pass beyond
the last sequence point in the construct no earlier than the termination of all executions in
the family.

16 It is implementation-defined whether the c action in the abstract machine occurs before
execution reaches “sl_sync.” In particular, the side effects in the create block item list may
dominate the start of the family in the precedence order ↝; in this case, if execution never
reaches that point in the creating thread, the family may not execute at all.

17 Each execution is associated with a unique logical thread index, which can be observed via
a sl_index declaration in the designated thread program (cf. I.5.7.1).

18 The set of all logical thread indexes S used the family is defined by the triplet of integer
values (A,B,C), defined by the integer conversion ([II99, 6.3.1.1], [II11b, 6.3.1.1]) of the
start, limit, step configuration expressions, as follows:

S = { {A + nC∥n ∈ N ∧A ≤ A + nC ≤ B} if C > 0
{A + nC∥n ∈ N ∧B ≤ A + nC ≤ A} if C < 0

The behavior of the program is undefined if S is not finite when execution reaches the create
construct (i.e. when C = 0), or if any of the values in S does not fit in one of the base integer
types. If S = ∅, no execution of the thread program takes place (in particular when A = B).

19 S is ordered with the following total order:

∀x ∈ S,∀y ∈ S x∠y⇔ { x < y if C > 0
x > y if C < 0

20 The logical index value x ∈ S such that ∀y ∈ S/{x} x∠y, if it exists, is called the first index
of the family.

21 The logical index value x ∈ S such that ∀y ∈ S/{x} y∠x, if it exists, is called the last index
of the family.

(the first and last indexes may be identical, e.g. when A = 0,B = 1,C = 1)
22 For any logical index value x ∈ S, its successor value is the logical index value y ∈ S/{x}

such that ∀z ∈ S/{x, y}, z∠x ∨ y∠z. The last index has no successor.
23 The order ∠ described here corresponds to the order ∠ from section 7.2.2.2: the successor

index value of a thread is the index of the successor thread in the family.

330 APPENDIX I. SL LANGUAGE SPECIFICATION

Side note I.4: Defining the index sequence in the abstract semantics.
The phrasing in clause I.5.8.1§18 purposefully avoids defining how the index sequence is computed, in order
to prevent assumptions about the behavior of the machine in case of overflow. This way, we are able to
abstract the index sequence away from the operational semantics of a particular implementation.
However it is compatible with the phrasing in section 4.3.2.3.

24 The executions in the family and the execution of the creating thread are related via chan-
nels, with a topology determined by the kind of each channel declaration:

• the outgoing endpoint of a “global” channel in the creating thread is connected to
the incoming endpoint of the corresponding “global” channel in each execution of the
designated thread program;

• the outgoing endpoint of a “shared” channel in the creating thread is connected to
the incoming endpoint of the corresponding “shared” channel pair in the execution
associated with the first index of the family;

• the outgoing endpoint of a “shared” channel pair in an execution associated with any
index but the last is connected to the incoming endpoint of the corresponding “shared”
channel pair in the execution associated with the successor index;

• the outgoing endpoint of a “shared” channel pair in an execution associated with the
last logical index is connected to the incoming endpoint of the corresponding “shared”
channel in the creating thread.

An illustration of this topology is given in fig. I.1 and fig. I.2; control dependencies are
given in dotted lines,“global” channels are indicated in blue and “shared” channels in orange.
Although the schedule is unspecified, and the family thread executions can occur either
simultaneously, in sequence, or out of index order (e.g. in fig. I.2), the channel topology and
the relationship between “sl_set” and “sl_get” is guaranteed by the language semantics.

25 The run-time value b of the “block” family configuration expression, if it is non-zero, con-
strains the definition of the sequential segments of the family (section 7.2.2.2) by the execu-
tion environment, by requiring that no more than b separate sequential segments are defined
for the family, per processor. This corresponds to the constrain mechanism introduced in
section 4.3.2.2. This implies that no more than b × P units of fair scheduling as used to
run the threads in the family, where P is the actual number of processors involved in the
creation at run-time. If b = 0, no constraint is expressed.

26 The “place” family configuration expressions does not influence the functional behavior of
the program; it is described further in chapter 11.

I.5.8.2 Outgoing communication statements

Syntax

thread-argument-assignment :
sl_seta (identifier , assignment-expression) ;

thread-parameter-assignment :
sl_setp (identifier , assignment-expression) ;

statement :
. . .
thread-argument-assignment
thread-parameter-assignment

I.5. LANGUAGE 331

sl_
cre

ate

sl_
syn

c

sl_
se

ta
("g

lob
al"

)

sl_
ge

tp

sl_
ge

tp

sl_
ge

tp

sl_
se

ta
("s

ha
red

")

sl_
ge

tp

sl_
se

tp

sl_
se

tp

sl_
ge

tp

sl_
se

tp

sl_
ge

tp

sl_
ge

ta

(first index)

(successor index)

(last index)

execution sequence / time

Figure I.1: Channel topology in a parallel thread family.

sl_
cre

ate

sl_
syn

c
sl_

se
ta

("g
lob

al"
)

sl_
ge

tp

sl_
ge

tp

sl_
ge

tp

sl_
se

ta
("s

ha
red

")

sl_
ge

tp

sl_
se

tp

sl_
se

tp

sl_
ge

tp

sl_
se

tp

sl_
ge

tp

sl_
ge

ta

(first index)
(successor index)

(last index)

execution sequence / time

Figure I.2: Channel topology in a thread family with irregular schedule.

Constraints

1 The identifier used with sl_seta must be a visible thread argument name (cf. I.5.8.1).
2 The sl_seta statement shall not appear outside of the create block item list of the create

construct where the corresponding thread argument name is defined.
3 The identifier used with sl_setp must be a thread parameter name in the enclosing thread

function.
4 The sl_setp statement shall not appear outside of a thread function body.
5 The right assignment expression in either sl_setp or sl_seta must be a suitable expression

for use as the right operand of a virtual simple C assignment expression where the left
operand would be an lvalue with the channel type ([II99, 6.5.16.1], [II11b, 6.5.16.1]).

Semantics

6 When they are reached during execution, the thread argument and parameter assignment
statements cause the output of the value of the specified expression to the channel end-
point designated by the specified identifier; they correspond to the w and w̄ operations in
section 7.2.

7 There is a sequence point before execution passes a thread argument or parameter assign-
ment statement.

8 If execution reaches a thread argument or parameter assignment statement after it has
passed another such statement designating the same channel endpoint, the behavior of the
program becomes undefined.

332 APPENDIX I. SL LANGUAGE SPECIFICATION

I.5.9 External definitions

1 Any of C’s external declarations that declare or define external objects, any of C’s external
function declarations and definitions, any of C’s external declarations with the storage class
specifier typedef, and any of C’s external declarations that declare a structure, enum or
union type ([II99, 6.9], [II11b, 6.9]) are valid in SL with the same semantics as in C, with
the same restrictions as in clause I.5.7§1 above.

2 Additionally, SL defines a new construct for thread function definitions.

I.5.9.1 Thread function definitions

Syntax

thread-function-definition:
sl_def (identifier [, attributesopt ¬

[, thread-parameter-list]opt]opt) ¬
compound-statement ¬
sl_enddef

external-declaration:
. . .
thread-function-definition

Constraints

1 The identifier in thread functions definitions is in the same name space as C object and
function names. Therefore, [II99, 6.9§3] and [II11b, 6.9§3] apply.

2 The constraints in I.5.7.6 apply.

Semantics

3 A thread function definition specifies the name of the thread function being defined, the
identifiers of its channel endpoints, and the body of the thread program. The clauses in
I.5.7.6 apply.

I.5.10 Preprocessing directives

1 Preprocessing directives are defined in SL as in C ([II99, 6.10], [II11b, 6.10]).
2 In particular, an SL implementation may define any of [II11b, 6.10.8.3]’s conditional feature

macros (e.g. __STDC_NO_ATOMICS__) with the same semantics.
3 Additionally, M4 [KR77] is run to filter the pre-processed text after pre-processing com-

pletes and before translation starts, with the M4 quotes changed to “[[” and “]]” to avoid
conflicting with other uses of punctuation valid in C, and all predefined M4 macros renamed
with the “m4_” prefix to avoid conflicting with existing C identifiers.

I.6 Library

All of C’s reserved identifiers are reserved in SL ([II99, 7.1.3], [II11b, 7.1.3]).
Other library services available in SL are described in section 6.4.3.

Appendix J

QuickSort example

To exercise the dynamic mapping scheme described in chapter 10, we experimented with two
implementations of the QuickSort algorithm with a cycle-accurate emulator of the target
architecture.

J.1 Benchmark program

Our two implementations are given in listing J.1 and listing J.2. The first implementation is
the “naive” algorithm which spawns two separate families for each branch of the recursion;
the second implementation uses a single family of two threads at each recursion step. The
procedure implementing each recursion step is augmented to emit the array index of the
values being examined: the position of the chosen pivot, and the positions of the successive
values being swapped around the pivot.

J.2 Input and baseline

We used three different input arrays, each consisting of 300 pseudo-random integers.
To establish a baseline, we also hand-coded a pure sequential version of the first algorithm

which does not use concurrency in any way. We then ran this sequential version on the cycle-
accurate machine emulation of the target architecture (MGSim).

Our results are illustrated in fig. J.1. These diagram represent memory activity over
time. The horizontal axis represents time; the vertical axis represents cells in the array
being sorted. A dot in the diagram indictes a memory read or write operation. The average
time to result is between 40 and 50 kcycles.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(a) Data set 1

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(b) Data set 2

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(c) Data set 3

Figure J.1: Baseline: purely sequental algorithm as one thread.

333

334 APPENDIX J. QUICKSORT EXAMPLE

1 #include <svp/ te s toutput . h>
2 #include <s t d l i b . h>
3 #include <unis td . h>
4 #include <std i o . h>
5 #include <f c n t l . h>
6 #define MARK_P1(x) output_uint ((x<<2)|1 , 0)
7 #define MARK_P2(x) output_uint ((x<<2)|2 , 0)
8 #define MARK_P3(x) output_uint ((x<<2)|3 , 0)
9

10 void swap (int ∗a , int ∗b) {
11 int t=∗a ; ∗a=∗b ; ∗b=t ;
12 }
13
14 sl_def (sort , s l__stat ic ,
15 sl_glparm (int ∗ , a r r) ,
16 sl_glparm (s ize_t , beg) , sl_glparm (s ize_t , end)) {
17 s i ze_t beg = sl_getp (beg) ;
18 s i ze_t end = sl_getp (end) ;
19 i f (end > beg + 1) {
20 int ∗ ar r = sl_getp (a r r) ;
21
22 /∗ compute pivot as median of
23 start , end and middle values ∗/
24 int x = arr [beg] , y = arr [end −1] ,
25 z = arr [beg+(end−beg) / 2] ;
26 int piv = ((x < y) && (y < z)) ? y
27 : (((y < x) && (x < z)) ? x : z) ;
28 int l = beg + 1 , r = end ;
29
30 while (l < r) {
31 /∗ organize values around pivot ∗/
32 MARK_P1(l) ;
33 i f (a r r [l] <= piv)
34 l++;
35 else {
36 MARK_P2(l) ; MARK_P3(r −1) ;
37 swap(&arr [l] , &ar r [−− r]) ;
38 }
39 }
40 MARK_P2(l −1) ; MARK_P3(beg) ;
41 swap(&arr [−− l] , &ar r [beg]) ;
42
43 /∗ recurse ∗/
44 sl_create (, , , , , , , sort , sl_glarg (int ∗ , , a r r) ,
45 sl_glarg (s ize_t , , beg) , sl_glarg (s ize_t , , l)) ;
46 sl_create (, , , , , , , sort , sl_glarg (int ∗ , , a r r) ,
47 sl_glarg (s ize_t , , r) , sl_glarg (s ize_t , , end)) ;
48 sl_sync () ;
49 sl_sync () ;
50 }
51 }
52 sl_enddef
53
54 int array [1 0 0 0 0 0] ;
55
56 sl_def (t_main , void) {
57 /∗ read N values from the f i l e "data" ,
58 N set via environment var iab le . ∗/
59 s i ze_t n = ato i (getenv ("N")) ;
60 int fd = open ("data" , O_RDONLY) ;
61 for (s s i z e_t p = 0 ; p < n ; ++p)
62 p += read (fd , array+p , (n−p)∗ s izeof (int)) ;
63 c l o s e (fd) ;
64
65 /∗ perform the computation ∗/
66 sl_create (, , , , , , , sort , sl_glarg (int ∗ , , array) ,
67 sl_glarg (s ize_t , , 0) , sl_glarg (s ize_t , , n)) ;
68 sl_sync () ;
69 }
70 sl_enddef

Listing J.1: QuickSort benchmark in SL, classic algorithm.

J.2. INPUT AND BASELINE 335

1 #include <svp/ te s toutput . h>
2 #include <s t d l i b . h>
3 #include <unis td . h>
4 #include <std i o . h>
5 #include <f c n t l . h>
6 #define MARK_P1(x) output_uint ((x<<2)|1 , 0)
7 #define MARK_P2(x) output_uint ((x<<2)|2 , 0)
8 #define MARK_P3(x) output_uint ((x<<2)|3 , 0)
9
10 void swap (int ∗a , int ∗b) {
11 int t=∗a ; ∗a=∗b ; ∗b=t ;
12 }
13
14 sl_def (sort2 , s l__stat ic , sl_glparm (int ∗ , a r r) ,
15 sl_glparm (s ize_t , beg1) , sl_glparm (s ize_t , end1) ,
16 sl_glparm (s ize_t , beg2) , sl_glparm (s ize_t , end2)) {
17
18 sl_index (i) ;
19 s i ze_t beg = i ? sl_getp (beg2) : sl_getp (beg1) ;
20 s i ze_t end = i ? sl_getp (end2) : sl_getp (end1) ;
21 i f (end > beg + 1)
22 {
23 int ∗ ar r = sl_getp (a r r) ;
24 /∗ compute pivot as median of
25 start , end and middle values ∗/
26 int x = arr [beg] , y = arr [end −1] ,
27 z = arr [beg+(end−beg) / 2] ;
28 int piv = ((x < y) && (y < z)) ? y
29 : (((y < x) && (x < z)) ? x : z) ;
30 int l = beg + 1 , r = end ;
31 /∗ organize values around pivot ∗/
32 while (l < r) {
33 MARK_P1(l) ;
34 i f (a r r [l] <= piv)
35 l++;
36 else {
37 MARK_P2(l) ; MARK_P3(r −1) ;
38 swap(&arr [l] , &ar r [−− r]) ;
39 }
40 }
41 MARK_P2(l −1) ; MARK_P3(beg) ;
42 swap(&arr [−− l] , &ar r [beg]) ;
43 /∗ recurse ∗/
44 sl_create (, , , 2 , , , , sort2 , sl_glarg (int ∗ , , a r r) ,
45 sl_glarg (s ize_t , , beg) , sl_glarg (s ize_t , , l) ,
46 sl_glarg (s ize_t , , r) , sl_glarg (s ize_t , , end)) ;
47 sl_sync () ;
48 }
49 }
50 sl_enddef
51
52 int array [1 0 0 0 0 0] ;
53
54 sl_def (t_main , void) {
55 /∗ read N values from the f i l e "data" ,
56 N set via environment var iab le . ∗/
57 s i ze_t n = ato i (getenv ("N")) ;
58 int fd = open ("data" , O_RDONLY) ;
59 for (s s i z e_t p = 0 ; p < n ; ++p)
60 p += read (fd , array+p , (n−p)∗ s izeof (int)) ;
61 c l o s e (fd) ;
62
63 /∗ perform the computation ∗/
64 sl_create (, , , , , , , sort2 , sl_glarg (int ∗ , , array) ,
65 sl_glarg (s ize_t , , 0) , sl_glarg (s ize_t , , n) ,
66 sl_glarg (s ize_t , , 0) , sl_glarg (s ize_t , , 0)) ;
67 sl_sync () ;
68 }
69 sl_enddef

Listing J.2: QuickSort benchmark in SL, families of two threads.

336 APPENDIX J. QUICKSORT EXAMPLE

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(a) Alg. J.1, Data set 1

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(b) Alg. J.1, Data set 2

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(c) Alg. J.1, Data set 3

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(d) Alg. J.2, Data set 1

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(e) Alg. J.2, Data set 2

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(f) Alg. J.2, Data set 3

Figure J.2: Execution on 1 core with 1 family context.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(a) Alg. J.1, Data set 1

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(b) Alg. J.1, Data set 2

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(c) Alg. J.1, Data set 3

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(d) Alg. J.2, Data set 1

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(e) Alg. J.2, Data set 2

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(f) Alg. J.2, Data set 3

Figure J.3: Execution on 1 core with 3 family contexts.

J.3 Multi-threaded behavior

We then executed our concurrent version, with only 1 family context available in the un-
derlying architecture. The results are shown in fig. J.2. The overhead of the conditional on
the availability of concurrency resources increases the time to result to between 50 and 60
kcycles.

We then executed the same programs over a system configured to offer only 3 family
contexts to programs, on one core. The results are shown in fig. J.3. Despite the overhead,

J.3. MULTI-THREADED BEHAVIOR 337

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(a) Alg. J.1, Data set 1

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(b) Alg. J.1, Data set 2

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(c) Alg. J.1, Data set 3

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(d) Alg. J.2, Data set 1

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(e) Alg. J.2, Data set 2

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(f) Alg. J.2, Data set 3

Figure J.4: Execution on 1 core with 31 family contexts.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(a) Data set 1

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(b) Data set 2

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

ar
ra

y
po

si
tio

ns

clock cycles (x1000)

(c) Data set 3

Figure J.5: Execution on 1 core with 31 family contexts, using Algorithm J.1 and a threshold
on concurrency creation.

the overlap of multiple threads in the pipeline reduces bubbles and the total execution time
becomes equal or below the overhead.

With 31 family contexts, which is the standard configuration of the target implementa-
tion, we obtain the results in fig. J.4 for one core: the time to result is reduced to between
35 and 45 kcycles, i.e. an improvement of 10% to 15% over the baseline.

We also tried to compensate the overhead of testing on resource availability by only
using the concurrency construct if the amount of work (size of the sub-array) is larger than
16 items. Our results with this attempt are shown in fig. J.5: although there are less failed
allocations overall, the overhead of the additional conditionals (6 extra instructions) is nearly
equal to the cost of a failed allocation, resulting in a negligible gain overall.

Appendix K

Mandelbrot set approximation

This appendix provides the source code for the example heterogeneous workload from sec-
tion 13.3.

1 sl_def (mandel , ,
2 sl_glfparm (double , f our) ,
3 sl_glfparm (double , x s t a r t) , sl_glfparm (double , y s t a r t) ,
4 sl_glfparm (double , xstep) , sl_glfparm (double , ystep) ,
5 sl_glparm (uint16_t , xre s) , sl_glparm (s ize_t , i count)) {
6 // compute the complex point from the
7 // l o g i ca l thread index
8 sl_index (i) ;
9 uint16_t xb = i % sl_getp (xre s) , yb = i / sl_getp (xre s) ;
10 double cx = sl_getp (x s t a r t) + xb ∗ sl_getp (xstep) ;
11 double cy = sl_getp (y s t a r t) + yb ∗ sl_getp (ystep) ;
12
13 double zx = cx , zy = cy ;
14 s i ze_t v ;
15 for (v = 0 ; v < sl_getp (i count) ; ++v) {
16 // i t e ra t e z := z^2 + c
17 double q1 = zx ∗ zx , q2 = zy ∗ zy ;
18 i f ((q1 + q2) >= sl_getp (four))
19 break ;
20 double t = q1 − q2 + cx , q3 = zx ∗ zy ;
21 zx = t ; zy = 2 ∗ q3 + cy ;
22 }
23 // pseudo−use of ‘ ‘ v ’ ’ to prevent the compiler from erasing the loop as dead code .
24 __asm__ __volatile__("" : : " r " (v)) ;
25 } sl_enddef

Listing K.1: Computation kernel executed by each logical thread.

1 sl_def (work) {
2 sl_create (, , /∗ l o g i c a l index range : ∗/ 0 , NTHREADS_TOTAL, 1 ,
3 /∗ max nr . o f threads / core : ∗/ THREADS_PER_CORE, ,
4 mandel ,
5 sl_glfarg (double , , 4 . 0) ,
6 sl_glfarg (double , , X_START) , sl_glfarg (double , , Y_START) ,
7 sl_glfarg (double , , X_STEP) , sl_glfarg (double , , Y_STEP) ,
8 sl_glarg (uint16_t , , X_NPOINTS) , sl_glarg (s ize_t , , MAXITER)) ;
9 sl_sync () ;
10 } sl_enddef

Listing K.2: Workload implementation using an even distribution.

339

340 APPENDIX K. MANDELBROT SET APPROXIMATION

1 sl_def (mandelouter , ,
2 sl_glfparm (double , x s t a r t) ,
3 sl_glfparm (double , y s t a r t) ,
4 sl_glfparm (double , xstep) ,
5 sl_glfparm (double , ystep) ,
6 sl_glparm (s ize_t , npo ints) ,
7 sl_glparm (s ize_t , b l o c k s i z e) ,
8 sl_glparm (uint16_t , x re s) ,
9 sl_glparm (s ize_t , i count))
10 {
11 sl_index (p) ;
12 s i ze_t n_cores = sl_placement_size (s l_default_placement ()) ;
13 sl_create (,
14 // execute on the l o c a l core :
15 PLACE_LOCAL,
16 // l o g i c a l index range :
17 p , sl_getp (npo ints)+p , n_cores ,
18 // number o f threads per core :
19 sl_getp (b l o c k s i z e) , ,
20 mandel ,
21 sl_glfarg (double , , 4 . 0) ,
22 sl_glfarg (double , , sl_getp (x s t a r t)) ,
23 sl_glfarg (double , , sl_getp (y s t a r t)) ,
24 sl_glfarg (double , , sl_getp (xstep)) ,
25 sl_glfarg (double , , sl_getp (ystep)) ,
26 sl_glarg (uint16_t , , sl_getp (x re s)) ,
27 sl_glarg (s ize_t , , sl_getp (i count))) ;
28 sl_sync () ;
29 }
30 sl_enddef
31

32 sl_def (work)
33 {
34 s i ze_t n_cores = sl_placement_size (s l_default_placement ()) ;
35 sl_create (, ,
36 // l o g i c a l index range :
37 0 , n_cores , 1 ,
38 // one thread per core :
39 1 , ,
40 mandelouter ,
41 sl_glfarg (double , , X_START) ,
42 sl_glfarg (double , , Y_START) ,
43 sl_glfarg (double , , X_STEP) ,
44 sl_glfarg (double , , Y_STEP) ,
45 sl_glarg (s ize_t , , NTHREADS_TOTAL) ,
46 sl_glarg (s ize_t , , THREADS_PER_CORE) ,
47 sl_glarg (uint16_t , , X_NPOINTS) ,
48 sl_glarg (s ize_t , , MAXITER)) ;
49 sl_sync () ;
50 }
51 sl_enddef

Listing K.3: Workload implementation using a round-robin distribution.

Acronyms

ABI Application Binary Interface

ANSI American National Standards
Institute

ALU Arithmetic Logic Unit

API Application Programming Interface

CAS Compare-and-Swap

CCS Calculus of Communicating
Systems [Mil80]

CMP Chip Multi-Processor

CSP Communicating Sequential
Processes [Hoa78]

CWP Current Window
Pointer [GAB+88, MAG+88]

DMA Direct Memory Access

DRAM Dynamic RAM

ELF Executable and Linkable
Format [Com95]

FIFO First-In, First-Out

F/OSS Free and Open Source Software

FP Floating Point

FPGA Field-Programmable Gate Array

FPU Floating-Point Unit

FRF Floating-point Register File

FU Functional Unit

GAS Global Address Space

GC Garbage Collection

GCC GNU C Compiler

GCD Grand Central Dispatch [App]

GFID Global Family Identifier

GPGPU General-purpose GPU

GPU Graphics Processing Unit
ICD Implicit Communication Domain
CD Consistency Domain
ILP Instruction-Level Parallelism
HMT Hardware Multi-Threading
HIMCYFIO Here Is My Component, You

Figure It Out
HPC High Performance Computing
IDN I/O Dynamic Network [BEA+08]
ILP Instruction-Level Parallelism
IPC Instructions Per Cycle
IPI Inter-Processor Interrupt
IRF Integer Register File
ISA Instruction Set Architecture
LL/SC Load-link, Store-conditional
LSB Least Significant Bit
LSU Load-Store Unit
MCU Memory Control Unit
MDN Memory Dynamic

Network [BEA+08]
MFC Memory Flow Controller [KDH+05]
MIMD Multiple Instruction, Multiple Data

MMU Memory Management Unit
MPB Message-Passing Buffer
MPSoC Multi-Processor System-on-Chip
MSB Most Significant Bit
NAS NASA Advanced Supercomputing
NCU Network Control Unit
NFS Network File System
NoC Network-on-Chip
NUMA Non-Uniform Memory Access

341

342 ACRONYMS

PC Program Counter

PPE Power Processor
Element [KDH+05]

QoS Quality of Service

RAM Random-Access Memory

RAU Register Allocation Unit

REST REpresentational State
Transfer [Fie00]

RF Register File

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RTC Real-Time Clock

SAC Single-Assignment C [GS06]

SASOS Single Address Space Operating
System

SCC Single-Chip Cloud Computer

STN Static Network [BEA+08]

SM Streaming
Multiprocessor [LNOM08]

SMT Simultaneous Multi-Threading

SIMD Single Instruction, Multiple Data

SMP Symmetric Multi-Processor

SoC System-on-Chip

SPE Synergistic Processing
Element [KDH+05]

SPEC Standard Performance Evaluation
Corporation

SPU Synergistic Processing
Unit [KDH+05]

SPMD Single Program, Multiple Data

TBB Threading Building Blocks [Rei07]

TCU Thread Creation Unit

TLB Translation Lookaside Buffer

TLS Thread-Local Storage

TMU Thread Management Unit

TPC Texture/Processor
Cluster [LNOM08]

TPL Thread Parallelism Library [Duf09]

UART Universal Asynchronous
Receiver-Transmitter

UDN User Dynamic Network [BEA+08]

VLIW Very Large Instruction Word

Related publications by the author

[1] Thomas Bernard, Clemens Grelck, Michael Hicks, Chris Jesshope, and Raphael Poss. Resource-agnostic
programming for many-core Microgrids. In Mario Guarracino, Frédéric Vivien, Jesper Träff, Mario
Cannatoro, Marco Danelutto, Anders Hast, Francesca Perla, Andreas Knüpfer, Beniamino Di Martino,
and Michael Alexander, editors, Euro-Par 2010 Parallel Processing Workshops, volume 6586 of Lecture
Notes in Computer Science, pages 109–116. Springer Berlin / Heidelberg, 2011. ISBN 978-3-642-21877-4.
doi:10.1007/978-3-642-21878-1_14.

[2] Stephan Herhut, Carl Joslin, Sven-Bodo Scholz, Raphael Poss, and Clemens Grelck. Concurrent non-
deferred reference counting on the Microgrid: First experiences. In J. Haage and M. Morazán, editors,
Implementation and Application of Functional Languages, volume 6647 of Lecture Notes in Computer
Science, pages 185–202. Springer Berlin / Heidelberg, 2011. ISBN 978-3-642-24275-5. doi:10.1007/
978-3-642-24276-2_12.

[3] Chris Jesshope, Michael Hicks, Mike Lankamp, Raphael Poss, and Li Zhang. Making multi-cores main-
stream – from security to scalability. In Barbara Chapman, Frédéric Desprez, Gerhard R. Joubert,
Alain Lichnewsky, Frans Peters, and Thierry Priol, editors, Parallel Computing: From Multicores and
GPU’s to Petascale, volume 19 of Advances in Parallel Computing, pages 16–31. IOS Press, 2010. ISBN
978-1-60750-529-7. doi:10.3233/978-1-60750-530-3-16.

[4] Raphael Poss, Clemens Grelck, Stephan Herhut, and Sven-Bodo Scholz. Lazy reference counting for the
Microgrid. In Proc. 16th Workshop on on Interaction between Compilers and Computer Architectures
(INTERACT’16). IEEE, 2012. (to appear).

[5] Raphael Poss and Chris Jesshope. Towards scalable implicit communication and synchroniza-
tion. In The First Workshop on Advances in Message Passing (AMP’10). Toronto, Canada, June
2010. Available from: http://www.cs.rochester.edu/u/cding/amp/papers/pos/Towards%20Scalable%
20Implicit%20Communication%20and%20Synchronization.pdf.

[6] Raphael Poss, Mike Lankamp, M. Irfan Uddin, Jaroslav Sýkora, and Leoš Kafka. Heterogeneous inte-
gration to simplify many-core architecture simulations. In Proc. 2012 Workshop on Rapid Simulation
and Performance Evaluation: Methods and Tools, RAPIDO ’12, pages 17–24. ACM, 2012. ISBN 978-1-
4503-1114-4. doi:10.1145/2162131.2162134.

[7] Raphael Poss, Mike Lankamp, Qiang Yang, Jian Fu, Michiel W. van Tol, and Chris Jesshope. Apple-
CORE: Microgrids of SVP cores (invited paper). In Proc. 15th Euromicro Conference on Digital System
Design. IEEE, Cesme, Izmir, Turkey, September 2012. (to appear).

[8] M. Irfan Uddin, Chris R. Jesshope, Michiel W. van Tol, and Raphael Poss. Collecting signatures to
model latency tolerance in high-level simulations of microthreaded cores. In Proceedings of the 2012
Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools, RAPIDO ’12, pages
1–8. ACM, New York, NY, USA, 2012. ISBN 978-1-4503-1114-4. doi:10.1145/2162131.2162132.

343

http://dx.doi.org/10.1007/978-3-642-21878-1_14
http://dx.doi.org/10.1007/978-3-642-24276-2_12
http://dx.doi.org/10.1007/978-3-642-24276-2_12
http://dx.doi.org/10.3233/978-1-60750-530-3-16
http://www.cs.rochester.edu/u/cding/amp/papers/pos/Towards%20Scalable%20Implicit%20Communication%20and%20Synchronization.pdf
http://www.cs.rochester.edu/u/cding/amp/papers/pos/Towards%20Scalable%20Implicit%20Communication%20and%20Synchronization.pdf
http://dx.doi.org/10.1145/2162131.2162134
http://dx.doi.org/10.1145/2162131.2162132

Bibliography related to hardware
microthreading

[9] R. Abdullaev. A parallel call stack implementation for the microthreaded architecture. Mas-
ter’s thesis, University of Amsterdam, July 2008. Available from: http://dist.svp-home.org/doc/
rustam-abdullaev-parallel-stack.pdf.

[10] I. Bell, N. Hasasneh, and C. Jesshope. Supporting microthread scheduling and synchronisation in
CMPs. International Journal of Parallel Programming, 34:343–381, 2006. ISSN 0885-7458. doi:
10.1007/s10766-006-0017-y.

[11] T. Bernard, K. Bousias, B. d. Geus, L. M., L. Zhang, A. Pimentel, P. Knijnenburg, and C. Jesshope. A
microthreaded architecture and its compiler. In M. Arenez, R. Doallo, B. B. Fraguela, and J. Tourino,
editors, Proc. 12th Workshop on Compilers for Parallel Computers (CPC’06), pages 326–340. Univer-
sity of A Coruña, A Coruña, Spain, January 2006. ISBN 54-609-8459-1.

[12] T. Bernard, K. Bousias, L. Guang, C. R. Jesshope, M. Lankamp, M.W. van Tol, and L. Zhang. A general
model of concurrency and its implementation as many-core dynamic RISC processors. In W. Najjar
and H. Blume, editors, Proc. Intl. Conf. on Embedded Computer Systems: Architecture, Modeling and
Simulation (IC-SAMOS 2008), pages 1–9. IEEE, Samos, Greece, July 2008. ISBN 978-1-4244-1985-2.

[13] T. Bernard, C. Jesshope, and P. Knijnenburg. Strategies for compiling muTC to novel chip multipro-
cessors. In S. Vassiliadis, M. Berekovic, and T. Hämäläinen, editors, Embedded Computer Systems:
Architectures, Modeling, and Simulation, volume 4599 of Lecture Notes in Computer Science, pages
127–138. Springer Berlin / Heidelberg, 2007. doi:10.1007/978-3-540-73625-7_15.

[14] T. A. M. Bernard. On the Compilation of a Parallel Language targeting the Self-adaptive Virtual
Processor. PhD thesis, University of Amsterdam, 2010. Available from: http://dare.uva.nl/record/
370096.

[15] A. Bolychevsky, C. Jesshope, and V. Muchnick. Dynamic scheduling in RISC architectures. IEE
Proceedings - Computers and Digital Techniques, 143(5):309–317, September 1996. ISSN 1350-2387.
doi:10.1049/ip-cdt:19960788.

[16] K. Bousias, L. Guang, C. Jesshope, and M. Lankamp. Implementation and evaluation of a microthread
architecture. Journal of Systems Architecture, 55(3):149–161, 2008. doi:10.1016/j.sysarc.2008.07.
001.

[17] K. Bousias, N. Hasasneh, and C. Jesshope. Instruction level parallelism through microthreading – a
scalable approach to chip multiprocessors. The Computer Journal, 49(2):211–233, March 2006. Avail-
able from: http://comjnl.oxfordjournals.org/content/49/2/211.abstract, doi:10.1093/comjnl/
bxh157.

[18] K. Bousias and C. Jesshope. The challenges of massive on-chip concurrency. In T. Srikanthan, J. Xue,
and C.-H. Chang, editors, Advances in Computer Systems Architecture, volume 3740 of Lecture Notes
in Computer Science, pages 157–170. Springer Berlin / Heidelberg, 2005. doi:10.1007/11572961_14.

[19] B. de Graaff. Implementing scheme in a massively concurrent architecture. BSc Thesis, University
of Amsterdam, Institute for Informatics, June 2011. Available from: http://dist.svp-home.org/doc/
ben-de-graaff-sl-scheme-for-microgrid.pdf.

345

http://dist.svp-home.org/doc/rustam-abdullaev-parallel-stack.pdf
http://dist.svp-home.org/doc/rustam-abdullaev-parallel-stack.pdf
http://dx.doi.org/10.1007/s10766-006-0017-y
http://dx.doi.org/10.1007/s10766-006-0017-y
http://dx.doi.org/10.1007/978-3-540-73625-7_15
http://dare.uva.nl/record/370096
http://dare.uva.nl/record/370096
http://dx.doi.org/10.1049/ip-cdt:19960788
http://dx.doi.org/10.1016/j.sysarc.2008.07.001
http://dx.doi.org/10.1016/j.sysarc.2008.07.001
http://comjnl.oxfordjournals.org/content/49/2/211.abstract
http://dx.doi.org/10.1093/comjnl/bxh157
http://dx.doi.org/10.1093/comjnl/bxh157
http://dx.doi.org/10.1007/11572961_14
http://dist.svp-home.org/doc/ben-de-graaff-sl-scheme-for-microgrid.pdf
http://dist.svp-home.org/doc/ben-de-graaff-sl-scheme-for-microgrid.pdf

346 BIBLIOGRAPHY RELATED TO HARDWARE MICROTHREADING

[20] T. D.Vu, L. Zhang, and C. R. Jesshope. The verification of the on-chip COMA cache coherence protocol.
In International Conference on Algebraic Methodology and Software Technology, pages 413–429, 2008.
ISBN 978-3-540-79979-5.

[21] N. Hasasneh, I. Bell, and C. Jesshope. Asynchronous arbiter for micro-threaded chip multiprocessors.
Journal of Systems Architecture, 53(5-6):253–262, 2007. ISSN 1383-7621. Available from: http://www.
sciencedirect.com/science/article/pii/S1383762106001263, doi:10.1016/j.sysarc.2006.10.004.

[22] N. M. Hasasneh. Chip Multi-Processors using a Micro-Threaded model. PhD thesis, University of Hull,
October 2006.

[23] C. Jesshope. Implementing an efficient vector instruction set in a chip multi-processor using micro-
threaded pipelines. In Proc. 6th Australasian Computer Systems Architecture Conference (ACSAC’01),
pages 80–88. IEEE, 2001. ISBN 0-7695-0954-1. doi:10.1109/ACAC.2001.903363.

[24] C. Jesshope. Multi-threaded microprocessors – evolution or revolution. In A. Omondi and S. Sedukhin,
editors, Advances in Computer Systems Architecture, volume 2823 of Lecture Notes in Computer Sci-
ence, pages 21–45. Springer Berlin / Heidelberg, 2003. doi:10.1007/978-3-540-39864-6_4.

[25] C. Jesshope. Scalable instruction-level parallelism. In A. Pimentel and S. Vassiliadis, editors, Computer
Systems: Architectures, Modeling, and Simulation, volume 3133 of Lecture Notes in Computer Science,
pages 383–392. Springer Berlin / Heidelberg, 2004. doi:10.1007/978-3-540-27776-7_40.

[26] C. Jesshope. Microgrids – the exploitation of massive on-chip concurrency. In L. Grandinetti,
editor, Grid Computing The New Frontier of High Performance Computing, volume 14 of Ad-
vances in Parallel Computing, pages 203–223. North-Holland, 2005. ISSN 0927-5452. Avail-
able from: http://www.sciencedirect.com/science/article/pii/S0927545205800127, doi:10.1016/
S0927-5452(05)80012-7.

[27] C. Jesshope. Microthreading, a model for distributed instruction-level concurrency. Parallel Processing
Letters, 16(2):209–228, 2006.

[28] C. Jesshope. A model for the design and programming of multi-cores. In L. Grandinetti, editor, High
Performance Computing and Grids in Action, number 16 in Advances in Parallel Computing, pages
37–55. IOS Press, 2008. ISBN 978-1-58603-839-7. Available from: http://dare.uva.nl/record/288698.

[29] C. Jesshope. Operating systems in silicon and the dynamic management of resources in many-core
chips. Parallel Processing Letters, 18(2):257–274, 2008.

[30] C. Jesshope, M. Lankamp, and L. Zhang. Evaluating CMPs and their memory architecture. In Archi-
tecture of Computing Systems – ARCS 2009, volume 5455/2009 of Lecture Notes in Computer Science,
pages 246–257. Springer Berlin / Heidelberg, 2009. ISBN 978-3-642-00453-7. ISSN 0302-9743 (Print)
1611-3349 (Online). doi:10.1007/978-3-642-00454-4_24.

[31] C. Jesshope, M. Lankamp, and L. Zhang. The Implementation of an SVP Many-core Processor and the
Evaluation of its Memory Architecture. ACM SIGARCH Computer Architecture News, 37(2):38–45,
2009. ISSN 0163-5964. doi:10.1145/1577129.1577136.

[32] C. Jesshope and B. Luo. Micro-threading: a new approach to future RISC. In Proc. 5th Australasian
Computer Architecture Conference (ACAC’00), pages 34–41. IEEE, 2000. ISBN 0-7695-0512-0. doi:
10.1109/ACAC.2000.824320.

[33] C. Jesshope, J.-M. Philippe, and M. van Tol. An architecture and protocol for the management
of resources in ubiquitous and heterogeneous systems based on the SVP model of concurrency. In
Embedded Computer Systems: Architectures, Modeling, and Simulation, pages 218–228, 2008. ISBN
978-3-540-70549-9.

[34] C. R. Jesshope. µTC - an intermediate language for programming chip multiprocessors. In C. Jesshope
and C. Egan, editors, Advances in Computer Systems Architecture, volume 4186 of Lecture Notes
in Computer Science, pages 147–160. Springer Berlin / Heidelberg, 2006. ISBN 978-3-540-40056-1.
doi:10.1007/11859802_13.

[35] M. Lankamp. Developing a Reference Implementation for a Microgrid of Microthreaded Microproces-
sors. Master’s thesis, University of Amsterdam, Amsterdam, the Netherlands, August 2007. Available
from: http://dist.svp-home.org/doc/mike-lankamp-ref-microgrid.pdf.

http://www.sciencedirect.com/science/article/pii/S1383762106001263
http://www.sciencedirect.com/science/article/pii/S1383762106001263
http://dx.doi.org/10.1016/j.sysarc.2006.10.004
http://dx.doi.org/10.1109/ACAC.2001.903363
http://dx.doi.org/10.1007/978-3-540-39864-6_4
http://dx.doi.org/10.1007/978-3-540-27776-7_40
http://www.sciencedirect.com/science/article/pii/S0927545205800127
http://dx.doi.org/10.1016/S0927-5452(05)80012-7
http://dx.doi.org/10.1016/S0927-5452(05)80012-7
http://dare.uva.nl/record/288698
http://dx.doi.org/10.1007/978-3-642-00454-4_24
http://dx.doi.org/10.1145/1577129.1577136
http://dx.doi.org/10.1109/ACAC.2000.824320
http://dx.doi.org/10.1109/ACAC.2000.824320
http://dx.doi.org/10.1007/11859802_13
http://dist.svp-home.org/doc/mike-lankamp-ref-microgrid.pdf

BIBLIOGRAPHY RELATED TO HARDWARE MICROTHREADING 347

[36] M. Lankamp. Design and Evaluation of a Multithreaded Many-Core Architecture. PhD thesis, Univer-
sity of Amsterdam, 201x. To appear.

[37] M. Lankamp and T. Bernard. Microthreads reference document (draft). Technical report, University
of Amsterdam, November 2008.

[38] B. Luo and C. Jesshope. Performance of a micro-threaded pipeline. In Proc. 7th Asia-Pacific confer-
ence on Computer systems architecture (CRPIT ’02), pages 83–90. Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 2002. ISBN 0-909925-84-4.

[39] A. Matei. Towards adaptable parallel software - the Hydra runtime for SVP programs. Master’s thesis,
Vrije Universiteit Amsterdam, Faculty of Science, Department of Mathematics and Computer Science,
November 2010. Available from: http://dist.svp-home.org/doc/andrei-matei-hydra-svp-runtime.
pdf.

[40] M. I. Uddin, M. W. van Tol, and C. R. Jesshope. High level simulation of SVP many-core sys-
tems. Parallel Processing Letters, 21(4):413–438, December 2011. ISSN 0129-6264. doi:10.1142/
S0129626411000308.

[41] M. W. van Tol. Exceptions in a microthreaded architecture. Master’s thesis, University of Amsterdam,
December 2006. Available from: http://dist.svp-home.org/doc/michiel-van-tol-exceptions.ps.

[42] M. W. van Tol, C. R. Jesshope, M. Lankamp, and S. Polstra. An implementation of the SANE Virtual
Processor using POSIX threads. J. Syst. Archit., 55(3):162–169, 2009. ISSN 1383-7621.

[43] M. W. van Tol and J. Koivisto. Extending and implementing the self-adaptive virtual processor for dis-
tributed memory architectures. Technical Report arXiv:1104.3876v1 [cs.DC], University of Amsterdam
and VTT, Finland, 2011. Available from: http://arxiv.org/abs/1104.3876.

[44] T. D. Vu and C. R. Jesshope. Formalizing SANE virtual processor in thread algebra. In M. Butler,
M. Hinchey, and M. Larrondo-Petrie, editors, Formal Methods and Software Engineering, volume 4789
of Lecture Notes in Computer Science, pages 345–365. Springer Berlin / Heidelberg, 2007. ISBN
978-3-540-76648-3. doi:10.1007/978-3-540-76650-6_20.

[45] Q. Yang, C. Jesshope, and J. Fu. A micro threading based concurrency model for parallel computing.
In Proc 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and
Phd Forum (IPDPSW), pages 1668–1674, May 2011. ISSN 1530-2075. doi:10.1109/IPDPS.2011.323.

[46] L. Zhang and C. R. Jesshope. On-Chip COMA Cache-Coherence Protocol for Microgrids of Mi-
crothreaded Cores. In Bouge and et al., editors, Euro-Par Workshops, volume 4854 of LNCS, pages
38–48. Springer, 2007.

http://dist.svp-home.org/doc/andrei-matei-hydra-svp-runtime.pdf
http://dist.svp-home.org/doc/andrei-matei-hydra-svp-runtime.pdf
http://dx.doi.org/10.1142/S0129626411000308
http://dx.doi.org/10.1142/S0129626411000308
http://dist.svp-home.org/doc/michiel-van-tol-exceptions.ps
http://arxiv.org/abs/1104.3876
http://dx.doi.org/10.1007/978-3-540-76650-6_20
http://dx.doi.org/10.1109/IPDPS.2011.323

General bibliography

[AAR08] Mohamed F. Ahmed, Reda A. Ammar, and Sanguthevar Rajasekaran. Spenk: adding another
level of parallelism on the Cell Broadband Engine. In Proc. 1st international forum on Next-
generation multicore/manycore technologies, IFMT ’08, pages 2:1–2:10. ACM, New York, NY,
USA, 2008. ISBN 978-1-60558-407-2. doi:10.1145/1463768.1463771.

[Abd08] Rustam Abdullaev. A parallel call stack implementation for the microthreaded architecture.
Master’s thesis, University of Amsterdam, July 2008. Available from: http://dist.svp-home.
org/doc/rustam-abdullaev-parallel-stack.pdf.

[ACH+08] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen, Sukyoung Ryu,
Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress language specification, version 1.0.
Technical report, Sun Microsystems, March 2008. Available from: http://research.sun.com/
projects/plrg/fortress.pdf.

[ADNP88] Arvind, Michael L. Dertouzos, Rishiyur S. Nikhil, and Gregory M. Papadopoulos. Project
dataflow: A parallel computing system based on the Monsoon architecture and the Id
programming language. Computation Structures Group Memo 285, Laboratory for Com-
puter Science, Massachusetts Institute of Technology, March 1988. Available from: http:
//csg.csail.mit.edu/pubs/memos/Memo-285/Memo-285.pdf.

[Adv] Advanced Micro Devices, Inc. AMD Fusion APU era begins. Available from: http://www.amd.
com/us/press-releases/Pages/amd-fusion-apu-era-2011jan04.aspx [cited March 2012].

[Agh85] Gul Abdulnabi Agha. ACTORS: A model of concurrent computation in distributed systems.
AITR 844, Massachusetts Institute of Technology, 1985. Available from: http://dspace.mit.
edu/handle/1721.1/6952.

[AHKB00] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger. Clock rate versus
IPC: the end of the road for conventional microarchitectures. SIGARCH Comput. Archit.
News, 28:248–259, May 2000. ISSN 0163-5964. doi:10.1145/342001.339691.

[ALL89] T.E. Anderson, E.D. Lazowska, and H.M. Levy. The performance implications of thread
management alternatives for shared-memory multiprocessors. IEEE Trans. Comput., 38(12):
1631–1644, dec 1989. ISSN 0018-9340. doi:10.1109/12.40843.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proc. of the April 18-20, 1967, Spring Joint Computer Conference, AFIPS ’67
(Spring), pages 483–485. ACM, New York, NY, USA, 1967. doi:10.1145/1465482.1465560.

[And] Erik Andersen. µClibc, a C library for embedded Linux. Available from: http://uclibc.org/
about.html [cited October 2011].

[ANP87] Arvind, Rishiyur Nikhil, and Keshav Pingali. I-structures: Data structures for parallel
computing. In Joseph Fasel and Robert Keller, editors, Graph Reduction, volume 279 of
Lecture Notes in Computer Science, pages 336–369. Springer Berlin / Heidelberg, 1987.
doi:10.1007/3-540-18420-1_65.

[App] Apple, Inc. Grand Central Dispatch (GCD) reference. Available from: http:
//developer.apple.com/mac/library/documentation/Performance/Reference/GCD_
libdispatch_Ref/Reference/reference.html [cited September 2011].

349

http://dx.doi.org/10.1145/1463768.1463771
http://dx.doi.org/10.1145/342001.339691
http://dx.doi.org/10.1109/12.40843
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1007/3-540-18420-1_65

350 GENERAL BIBLIOGRAPHY

[ARMa] ARM. ARM compiler toolchain compiler reference, version 5.0: Compiler-specific features:
__asm. Available from: http://infocenter.arm.com/help/topic/com.arm.doc.dui0491e/
BABFDCGD.html [cited September 2011].

[ARMb] ARM. ARM compiler toolchain compiler reference, version 5.0: Compiler-specific features:
Named register variables. Available from: http://infocenter.arm.com/help/topic/com.arm.
doc.dui0491e/CJAHJDBG.html [cited September 2011].

[ARM09] ARM. Procedure call standard for the ARM® architecture. Standard ARM-IHI-0042D, Octo-
ber 2009. Available from: http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/
IHI0042D_aapcs.pdf.

[AVWW96] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent Program-
ming in ERLANG. Prentice Hall, 2nd edition, 1996. ISBN 0-13-508301-X.

[Bat68] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–May
2, 1968, spring joint computer conference, AFIPS ’68 (Spring), pages 307–314. ACM, New
York, NY, USA, 1968. doi:10.1145/1468075.1468121.

[BBD+09] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs, Simon
Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. The multikernel: a new
os architecture for scalable multicore systems. In Proc. ACM SIGOPS 22nd symposium on
Operating systems principles, SOSP’09, pages 29–44. ACM, New York, NY, USA, 2009. ISBN
978-1-60558-752-3. doi:10.1145/1629575.1629579.

[BBG+06] T. Bernard, K. Bousias, B. de Geus, Lankamp M., L. Zhang, A.D. Pimentel, P.M.W. Knij-
nenburg, and C.R. Jesshope. A microthreaded architecture and its compiler. In M. Arenez,
R. Doallo, B. B. Fraguela, and J. Tourino, editors, Proc. 12th Workshop on Compilers for Par-
allel Computers (CPC’06), pages 326–340. University of A Coruña, A Coruña, Spain, January
2006. ISBN 54-609-8459-1.

[BBG+08] T. Bernard, K. Bousias, L. Guang, C. R. Jesshope, M. Lankamp, M. W. van Tol, and L. Zhang.
A general model of concurrency and its implementation as many-core dynamic RISC proces-
sors. In W. Najjar and H. Blume, editors, Proc. Intl. Conf. on Embedded Computer Systems:
Architecture, Modeling and Simulation (IC-SAMOS 2008), pages 1–9. IEEE, Samos, Greece,
July 2008. ISBN 978-1-4244-1985-2.

[BCS+98] Jay Boisseau, Larry Carter, Allan Snavely, David Callahan, John Feo, Simon Kahan, and
Zhijun Wu. CRAY T90 vs. Tera MTA: The old champ faces a new challenger. In Proc. Cray
User’s Group Conference. Cray Inc., 411 First Avenue South, Seattle, WA 9810, USA, June
1998.

[BEA+08] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, Liewei Bao,
J. Brown, M. Mattina, Chyi-Chang Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berger,
N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook. TILE64 processor: A 64-
core SoC with mesh interconnect. In IEEE International Solid-State Circuits Conference,
2008 (ISSCC 2008). Digest of Technical Papers., pages 88–598. IEEE, February 2008. doi:
10.1109/ISSCC.2008.4523070.

[Bem57] R.W. Bemer. How to consider a computer. Automatic Control Magazine, pages 66–69, March
1957. Available from: http://www.trailing-edge.com/~bobbemer/TIMESHAR.HTM.

[Ber09] Leslin Berlin. Kicking reality up a notch. The New York Times, July 2009. Available from:
http://www.nytimes.com/2009/07/12/business/12proto.html.

[Ber10] Thomas A. M. Bernard. On the Compilation of a Parallel Language targeting the Self-adaptive
Virtual Processor. PhD thesis, University of Amsterdam, 2010. Available from: http://dare.
uva.nl/record/370096.

[BFG+06] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J. Nowak,
D. J. Pearson, and N. J. Rohrer. High-performance CMOS variability in the 65-nm regime
and beyond. IBM J. Res. Dev., 50(4/5):433–449, July 2006. ISSN 0018-8646.

[BFJ+96] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and Keith H.
Randall. An analysis of dag-consistent distributed shared-memory algorithms. In SPAA ’96:
Proceedings of the eighth annual ACM symposium on Parallel algorithms and architectures,
pages 297–308. ACM, New York, NY, USA, 1996. ISBN 0-89791-809-6. doi:10.1145/237502.
237574.

http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1145/1629575.1629579
http://dx.doi.org/10.1109/ISSCC.2008.4523070
http://dx.doi.org/10.1109/ISSCC.2008.4523070
http://dx.doi.org/10.1145/237502.237574
http://dx.doi.org/10.1145/237502.237574

GENERAL BIBLIOGRAPHY 351

[BGH+11] Thomas Bernard, Clemens Grelck, Michael Hicks, Chris Jesshope, and Raphael Poss.
Resource-agnostic programming for many-core Microgrids. In Mario Guarracino, Frédéric
Vivien, Jesper Träff, Mario Cannatoro, Marco Danelutto, Anders Hast, Francesca Perla,
Andreas Knüpfer, Beniamino Di Martino, and Michael Alexander, editors, Euro-Par 2010
Parallel Processing Workshops, volume 6586 of Lecture Notes in Computer Science, pages
109–116. Springer Berlin / Heidelberg, 2011. ISBN 978-3-642-21877-4. doi:10.1007/
978-3-642-21878-1_14.

[BGJL08] K. Bousias, L. Guang, C.R. Jesshope, and M. Lankamp. Implementation and evaluation
of a microthread architecture. Journal of Systems Architecture, 55(3):149–161, 2008. doi:
10.1016/j.sysarc.2008.07.001.

[BHJ06a] Ian Bell, Nabil Hasasneh, and Chris Jesshope. Supporting microthread scheduling and syn-
chronisation in CMPs. International Journal of Parallel Programming, 34:343–381, 2006.
ISSN 0885-7458. doi:10.1007/s10766-006-0017-y.

[BHJ06b] Kostas Bousias, Nabil Hasasneh, and Chris Jesshope. Instruction level parallelism through
microthreading – a scalable approach to chip multiprocessors. The Computer Journal, 49(2):
211–233, March 2006. Available from: http://comjnl.oxfordjournals.org/content/49/2/
211.abstract, doi:10.1093/comjnl/bxh157.

[BJ05] Kostas Bousias and Chris Jesshope. The challenges of massive on-chip concurrency. In Tham-
bipillai Srikanthan, Jingling Xue, and Chip-Hong Chang, editors, Advances in Computer Sys-
tems Architecture, volume 3740 of Lecture Notes in Computer Science, pages 157–170. Springer
Berlin / Heidelberg, 2005. doi:10.1007/11572961_14.

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.
Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime system. SIGPLAN Not., 30
(8):207–216, 1995. ISSN 0362-1340. doi:10.1145/209937.209958.

[BJK07] Thomas Bernard, Chris Jesshope, and Peter Knijnenburg. Strategies for compiling muTC to
novel chip multiprocessors. In Stamatis Vassiliadis, Mladen Berekovic, and Timo Hämäläinen,
editors, Embedded Computer Systems: Architectures, Modeling, and Simulation, volume 4599
of Lecture Notes in Computer Science, pages 127–138. Springer Berlin / Heidelberg, 2007.
doi:10.1007/978-3-540-73625-7_15.

[BJM96] A. Bolychevsky, C.R. Jesshope, and V.B. Muchnick. Dynamic scheduling in RISC architec-
tures. IEE Proceedings - Computers and Digital Techniques, 143(5):309–317, September 1996.
ISSN 1350-2387. doi:10.1049/ip-cdt:19960788.

[BL93] Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multithreaded
computations. In STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, pages 362–371. ACM, New York, NY, USA, 1993. ISBN 0-89791-591-7.
doi:10.1145/167088.167196.

[BM07] Jan A. Bergstra and C. A. Middelburg. Thread algebra for strategic interleaving. Formal
Aspects of Computing, 19(4):445–474, 2007. doi:10.1007/s00165-007-0024-9.

[BPS+09] Andrew Baumann, Simon Peter, Adrian Schüpbach, Akhilesh Singhania, Timothy Roscoe,
Paul Barham, and Rebecca Isaacs. Your computer is already a distributed system. why isn’t
your OS? In Proc. 12th conference on Hot topics in operating systems (HotOS’09). USENIX
Association, Berkeley, CA, USA, 2009.

[BS06] Jurgen Bitzer and Philipp J.H. Schroder, editors. The Economics of Open Source Software
Development. Emerald Group Publishing Limited, October 2006. ISBN 978-0444527691.

[BSL+02] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter Marwedel.
Scratchpad memory: design alternative for cache on-chip memory in embedded systems. In
Proceedings of the tenth international symposium on Hardware/software codesign, CODES
’02, pages 73–78. ACM, New York, NY, USA, 2002. ISBN 1-58113-542-4. doi:10.1145/
774789.774805.

[CA88] D. E. Culler and Arvind. Resource requirements of dataflow programs. SIGARCH Comput.
Archit. News, 16:141–150, May 1988. ISSN 0163-5964. doi:10.1145/633625.52417.

http://dx.doi.org/10.1007/978-3-642-21878-1_14
http://dx.doi.org/10.1007/978-3-642-21878-1_14
http://dx.doi.org/10.1016/j.sysarc.2008.07.001
http://dx.doi.org/10.1016/j.sysarc.2008.07.001
http://dx.doi.org/10.1007/s10766-006-0017-y
http://dx.doi.org/10.1093/comjnl/bxh157
http://dx.doi.org/10.1007/11572961_14
http://dx.doi.org/10.1145/209937.209958
http://dx.doi.org/10.1007/978-3-540-73625-7_15
http://dx.doi.org/10.1049/ip-cdt:19960788
http://dx.doi.org/10.1145/167088.167196
http://dx.doi.org/10.1007/s00165-007-0024-9
http://dx.doi.org/10.1145/774789.774805
http://dx.doi.org/10.1145/774789.774805
http://dx.doi.org/10.1145/633625.52417

352 GENERAL BIBLIOGRAPHY

[CBHLL92] Jeff Chase, Miche Baker-Harvey, Hank Levy, and Ed Lazowska. Opal: A single address space
system for 64-bit architectures. SIGOPS Oper. Syst. Rev., 26:9–, April 1992. ISSN 0163-5980.
Available from: http://dl.acm.org/citation.cfm?id=142111.964562.

[CCS98] Bradford Chamberlain, Sung-Eun Choi, and Lawrence Snyder. A compiler abstraction for
machine independent parallel communication generation. In Zhiyuan Li, Pen-Chung Yew,
Siddharta Chatterjee, Chua-Huang Huang, P. Sadayappan, and David Sehr, editors, Languages
and Compilers for Parallel Computing, volume 1366 of Lecture Notes in Computer Science,
pages 261–276. Springer Berlin / Heidelberg, 1998. ISBN 978-3-540-64472-9. doi:10.1007/
BFb0032698.

[CCZ07] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and the Chapel
language. The International Journal of High Performance Computing Applications, 21(3):
291–312, August 2007. doi:10.1177/1094342007078442.

[CD97a] M. Cekleov and M. Dubois. Virtual-address caches. part 1: problems and solutions in unipro-
cessors. IEEE Micro, 17(5):64–71, sep/oct 1997. ISSN 0272-1732. doi:10.1109/40.621215.

[CD97b] M. Cekleov and M. Dubois. Virtual-address caches. part 2: Multiprocessor issues. Micro,
IEEE, 17(6):69–74, nov/dec 1997. ISSN 0272-1732. doi:10.1109/40.641599.

[CDMC+05] Cristian Coarfa, Yuri Dotsenko, John Mellor-Crummey, François Cantonnet, Tarek El-
Ghazawi, Ashrujit Mohanti, Yiyi Yao, and Daniel Chavarría-Miranda. An evaluation of global
address space languages: Co-Array Fortran and Unified Parallel C. In PPoPP ’05: Proc. 10th
ACM SIGPLAN symposium on Principles and practice of parallel programming, pages 36–47.
ACM, New York, NY, USA, 2005. ISBN 1-59593-080-9. doi:10.1145/1065944.1065950.

[CGMN80] T. J.W. Clarke, P. J.S. Gladstone, C. D. MacLean, and A. C. Norman. SKIM—the S, K, I re-
duction machine. In Proceedings of the 1980 ACM conference on LISP and functional program-
ming, LFP’80, pages 128–135. ACM, New York, NY, USA, 1980. doi:10.1145/800087.802798.

[CGS+05] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach
to non-uniform cluster computing. In OOPSLA ’05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications,
pages 519–538. ACM, New York, NY, USA, 2005. ISBN 1-59593-031-0. doi:10.1145/1094811.
1094852.

[Cha01] Bradford L. Chamberlain. The design and implementation of a region-based parallel pro-
gramming language. PhD thesis, University of Washington, November 2001. Available from:
http://www.cs.washington.edu/homes/brad/cv/pubs/degree/thesis.html.

[Cha02] Paul Chapman. Life universal computer, November 2002. Available from: http://www.igblan.
free-online.co.uk/igblan/ca/ [cited August 2011].

[CHA06] Kevin Crowston, James Howison, and Hala Annabi. Information systems success in free and
open source software development: theory and measures. Software Process: Improvement and
Practice, 11(2):123–148, 2006. ISSN 1099-1670. doi:10.1002/spip.259.

[CLFL94] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska. Sharing and
protection in a single-address-space operating system. ACM Trans. Comput. Syst., 12:271–307,
November 1994. ISSN 0734-2071. doi:10.1145/195792.195795.

[CMN83] Stuart K. Card, Thomas P. Moran, and Allen Newell. The psychology of human-computer
interaction. L. Erlbaum Associates, 1983. ISBN 0898592437.

[Com95] Tool Interface Standard (TIS) Committee. Executable and Linking Format (ELF) Specifica-
tion, Version 1.2, May 1995. Available from: http://refspecs.freestandards.org/elf/elf.
pdf.

[Con08] Open Watcom Contributors. Open Watcom C/C++ User’s Guide, Version 1.8, 2008. Avail-
able from: http://www.openwatcom.org/ftp/manuals/current/cguide.pdf.

[Coo04] Matthew Cook. Universality in elementary cellular automata. Complex Systems, 15(1):1–40,
2004. Available from: http://www.complex-systems.com/Archive/hierarchy/abstract.cgi?
vol=15&iss=1&art=01.

http://dx.doi.org/10.1007/BFb0032698
http://dx.doi.org/10.1007/BFb0032698
http://dx.doi.org/10.1177/1094342007078442
http://dx.doi.org/10.1109/40.621215
http://dx.doi.org/10.1109/40.641599
http://dx.doi.org/10.1145/1065944.1065950
http://dx.doi.org/10.1145/800087.802798
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1002/spip.259
http://dx.doi.org/10.1145/195792.195795

GENERAL BIBLIOGRAPHY 353

[Cor] Microsoft Corporation. Visual Studio 2010: C++ language reference: Inline assembler
overview. Available from: http://msdn.microsoft.com/en-us/library/4ks26t93.aspx [cited
September 2011].

[Cor09] Intel Corporation. An introduction to the Intel® QuickPath Intercon-
nect. Whitepaper 320412-001US, Intel Corporation, January 2009. Avail-
able from: http://www.intel.com/content/www/us/en/io/quickpath-technology/
quick-path-interconnect-introduction-paper.html.

[Cra11] Cray Inc, 901 Fifth Avenue, Suite 100, Seattle, WA 9816. Chapel Language Specification,
Version 0.8, April 2011. Available from: http://chapel.cray.com/spec/spec-0.8.pdf.

[CRM91] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. The information visualizer,
an information workspace. In Proceedings of the SIGCHI conference on Human factors in
computing systems: Reaching through technology, CHI ’91, pages 181–186. ACM, New York,
NY, USA, 1991. ISBN 0-89791-383-3. doi:10.1145/108844.108874.

[CSS+91] David E. Culler, Anurag Sah, Klaus E. Schauser, Thorsten von Eicken, and John Wawrzynek.
Fine-grain parallelism with minimal hardware support: a compiler-controlled threaded ab-
stract machine. In ASPLOS-IV: Proc. 4th international conference on Architectural support
for programming languages and operating systems, pages 164–175. ACM, New York, NY, USA,
1991. ISBN 0-89791-380-9. doi:10.1145/106972.106990.

[Dac06] Scott G. Dacko. Narrowing the skills gap for marketers of the future. Marketing Intelligence
& Planning, 24(3):283–295, 2006. ISSN 0263-4503. doi:10.1108/02634500610665736.

[Dav65] Martin Davis, editor. The Undecidable, Basic Papers on Undecidable Propositions, Unsolvable
Problems And Computable Functions. Raven Press, Hewlett, N.Y. (USA), 1965. ISBN 0-486-
43228-9.

[Day11] Edgar G. Daylight. Dijkstra’s rallying cry for generalization: The advent of the recursive
procedure, late 1950s‚ early 1960s. The Computer Journal, 2011. Available from: http://
comjnl.oxfordjournals.org/content/early/2011/03/08/comjnl.bxr002.abstract, doi:10.
1093/comjnl/bxr002.

[DGB+03] James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson, Thomas Kistler,
Alexander Klaiber, and Jim Mattson. The Transmeta Code Morphing™ software: using spec-
ulation, recovery, and adaptive retranslation to address real-life challenges. In Proc. 1st in-
ternational symposium on Code generation and optimization: feedback-directed and runtime
optimization, CGO ’03, pages 15–24. IEEE Computer Society, Washington, DC, USA, 2003.
ISBN 0-7695-1913-X.

[DGH+08] Jack Dongarra, Robert Graybill, William Harrod, Robert Lucas, Ewing Lusk, Piotr Luszczek,
Janice Mcmahon, Allan Snavely, Jeffrey Vetter, Katherine Yelick, Sadaf Alam, Roy Campbell,
Laura Carrington, Tzu-Yi Chen, Omid Khalili, Jeremy Meredith, and Mustafa Tikir. DARPA’s
HPCS program: History, models, tools, languages. In Marvin V. Zelkowitz, editor, Advances
in COMPUTERS High Performance Computing, volume 72 of Advances in Computers, pages
1–100. Elsevier, 2008. ISSN 0065-2458. doi:10.1016/S0065-2458(08)00001-6.

[Dij71] E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica, 1(2):115–138,
June 1971. ISSN 0001-5903. doi:10.1007/BF00289519.

[DKK+12] M. Daněk, L. Kafka, L. Kohout, J. Sýkora, and R. Bartosinski. UTLEON3: Exploring Fine-
Grain Multi-Threading in FPGAs. Circuits and Systems. Springer, November 2012. ISBN
978-1-4614-2409-3. Available from: http://www.springer.com/engineering/circuits+%26+
systems/book/978-1-4614-2409-3.

[DKKS10] M. Danek, L. Kafka, L. Kohout, and J. Sykora. Instruction set extensions for multi-threading in
LEON3. In Z. Kotasek et al., editor, Proc. 13th IEEE Symposium on Design and Diagnostics
of Electronic Circuits and Systems (DDECS’2010), pages 237–242. IEEE, 2010. ISBN 978-1-
4244-6610-8. doi:10.1109/DDECS.2010.5491777.

[Duf09] Joe Duffy. Concurrent Programming on Windows, chapter Task Parallel Library, pages 887—
929. Microsoft .NET development series. Addison-Wesley, Boston, MA, USA, 2009. ISBN
032143482X.

http://dx.doi.org/10.1145/108844.108874
http://dx.doi.org/10.1145/106972.106990
http://dx.doi.org/10.1108/02634500610665736
http://dx.doi.org/10.1093/comjnl/bxr002
http://dx.doi.org/10.1093/comjnl/bxr002
http://dx.doi.org/10.1016/S0065-2458(08)00001-6
http://dx.doi.org/10.1007/BF00289519
http://dx.doi.org/10.1109/DDECS.2010.5491777

354 GENERAL BIBLIOGRAPHY

[DZJ08] T. D.Vu, L. Zhang, and C. R. Jesshope. The verification of the on-chip COMA cache coherence
protocol. In International Conference on Algebraic Methodology and Software Technology,
pages 413–429, 2008. ISBN 978-3-540-79979-5.

[EBSA+11] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. In Proc. 38th annual international
symposium on Computer architecture, ISCA ’11, pages 365–376. ACM, New York, NY, USA,
2011. ISBN 978-1-4503-0472-6. doi:10.1145/2000064.2000108.

[FE81] M. Feller and M. Ercegovac. Queue machines: An organization for parallel computation. In
W. Brauer, P. Hansen, D. Gries, C. Moler, G. Seegmüller, J. Stoer, N. Wirth, and Wolfgang
Händler, editors, Conpar 81, volume 111 of Lecture Notes in Computer Science, pages 37–47.
Springer Berlin / Heidelberg, 1981. doi:10.1007/BFb0105108.

[FH76] W. S. Ford and V. C. Hamacher. Hardware support for inter-process communication and
processor sharing. SIGARCH Comput. Archit. News, 4(4):113–118, January 1976. ISSN 0163-
5964. doi:10.1145/633617.803559.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, Irvine, 2000. Available from: http:
//www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf.

[FLR98] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the Cilk-
5 multithreaded language. SIGPLAN Not., 33:212–223, May 1998. ISSN 0362-1340. doi:
10.1145/277652.277725.

[Foua] Free Software Foundation. Alpha relocations, section 9.1.3.3 of the GNU assembler user
guide. Available from: http://sourceware.org/binutils/docs/as/Alpha_002dRelocs.html
[cited September 2011].

[Foub] Python Software Foundation. What is Python? Executive Summary. http://www.python.
org/doc/essays/blurb/.

[Frea] Free Software Foundation. Assembler instructions with C expression operands, section
6.41 of the GNU compiler collection documentation. Available from: http://gcc.gnu.org/
onlinedocs/gcc/Extended-Asm.html [cited September 2011].

[Freb] Free Software Foundation. GNU C library. Available from: http://www.gnu.org/s/libc/
[cited October 2011].

[Frec] Free Software Foundation. Options for code generation conventions, section 3.18 of the GNU
compiler collection documentation. Available from: http://gcc.gnu.org/onlinedocs/gcc/
Code-Gen-Options.html [cited September 2011].

[Fred] Free Software Foundation. Referring to a type with typeof, section 6.6 of the GNU compiler
collection documentation. Available from: http://gcc.gnu.org/onlinedocs/gcc/Typeof.html
[cited September 2011].

[Free] Free Software Foundation. Specifying registers for local variables, section 6.44.2 of the GNU
compiler collection documentation. Available from: http://gcc.gnu.org/onlinedocs/gcc/
Local-Reg-Vars.html [cited September 2011].

[GA04] C. Gacek and B. Arief. The many meanings of open source. IEEE Software, 21(1):34–40,
January-February 2004. ISSN 0740-7459. doi:10.1109/MS.2004.1259206.

[GAB+88] R.B. Garner, A. Agrawal, F. Briggs, E.W. Brown, D. Hough, B. Joy, S. Kleiman, S. Muchnick,
M. Namjoo, D. Patterson, J. Pendleton, and R. Tuck. The scalable processor architecture
(SPARC). In Compcon Spring ’88. 33rd IEEE Computer Society International Conference,
Digest of Papers, pages 278–283. IEEE, February/March 1988. doi:10.1109/CMPCON.1988.
4874.

[Gar70] Martin Gardner. Mathematical games: The fantastic combinations of John Conway’s new
solitaire game "life". Scientific American, 223:120–123, October 1970. ISBN 0894540017.
Available from: http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_
gamelife/ConwayScientificAmerican.htm.

http://dx.doi.org/10.1145/2000064.2000108
http://dx.doi.org/10.1007/BFb0105108
http://dx.doi.org/10.1145/633617.803559
http://dx.doi.org/10.1145/277652.277725
http://dx.doi.org/10.1145/277652.277725
http://www.python.org/doc/essays/blurb/
http://www.python.org/doc/essays/blurb/
http://dx.doi.org/10.1109/MS.2004.1259206
http://dx.doi.org/10.1109/CMPCON.1988.4874
http://dx.doi.org/10.1109/CMPCON.1988.4874

GENERAL BIBLIOGRAPHY 355

[GBK+09] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U.C. Weiser. Many-core vs.
many-thread machines: Stay away from the valley. Computer Architecture Letters, 8(1):25–28,
January 2009. ISSN 1556-6056. doi:10.1109/L-CA.2009.4.

[GEMN07] M. Gschwind, D. Erb, S. Manning, and M. Nutter. An open source environment for cell
broadband engine system software. Computer, 40(6):37–47, june 2007. ISSN 0018-9162. doi:
10.1109/MC.2007.192.

[GJWJ07] B. Ganesh, A. Jaleel, D. Wang, and B. Jacob. Fully-buffered DIMM memory architectures:
Understanding mechanisms, overheads and scaling. In Proc. IEEE 13th International Sympo-
sium on High Performance Computer Architecture (HPCA’2007), pages 109–120, February
2007. doi:10.1109/HPCA.2007.346190.

[Goo] Google Inc. The Go programming language: Language design FAQ. http://golang.org/doc/
go_lang_faq.html, retrieved 2010-03-26.

[Gru94] Dirk Grunwald. Heaps o’ stacks: Time and space efficient threads without operating system
support. Technical Report A099254 (CU-CS-750-94), University of Colorado at Boulder—
Department of Computer Science, November 1994. Available from: http://handle.dtic.mil/
100.2/ADA452990.

[GS00] J. Gray and P. Shenoy. Rules of thumb in data engineering. In Proc. 16th International
Conference on Data Engineering., pages 3–10. IEEE, 2000. doi:10.1109/ICDE.2000.839382.

[GS06] Clemens Grelck and Sven-Bodo Scholz. SAC: a functional array language for efficient multi-
threaded execution. International Journal of Parallel Programming, 34(4):383–427, Aug 2006.

[GSS10] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. Asynchronous stream processing
with S-Net. International Journal of Parallel Programming, 38(1):38–67, 2010. doi:10.1007/
s10766-009-0121-x.

[Gus88] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533, May 1988.
ISSN 0001-0782. doi:10.1145/42411.42415.

[GVTP97] Antonio González, Mateo Valero, Nigel Topham, and Joan M. Parcerisa. Eliminating cache
conflict misses through XOR-based placement functions. In Proc. 11th International Con-
ference on Supercomputing (ICS’97), pages 76–83. ACM, New York, NY, USA, 1997. ISBN
0-89791-902-5. doi:10.1145/263580.263599.

[GWG80] John Gurd, Ian Watson, and John Glauert. A multilayered data flow computer architecture.
Technical Report UMCS-80-3-1, Department of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, England, March 1980. Available from: http://intranet.
cs.man.ac.uk/Intranet_subweb/library/cstechrep/Abstracts/UMCS-80-3-1.html.

[H1̈0] Philip Kaj Ferdinand Hölzenspies. On run-time exploitation of concurrency. PhD thesis,
University of Twente, Enschede, the Netherlands, April 2010. Available from: http://doc.
utwente.nl/70959/, doi:10.3990/1.9789036530217.

[Hal70] Daniel Stephen Halacy. Charles Babbage, father of the computer. Crowell-Collier Press, 1970.
ISBN 0027413705.

[Hal85] Robert H. Halstead, Jr. Multilisp: a language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst., 7(4):501–538, 1985. ISSN 0164-0925. doi:10.1145/4472.4478.

[Har11] G.H. Hardy. The new symbolic logic (review of Whitehead’s & Russell’s Principia Mathemat-
ica, Vol. I). The Times Literary Supplement, (504):321–322, September 1911. Available from:
http://www.cl.cam.ac.uk/~ns441/files/hardy-principia.pdf.

[Has06] Nabil M. Hasasneh. Chip Multi-Processors using a Micro-Threaded model. PhD thesis, Uni-
versity of Hull, October 2006.

[HBJ07] Nabil Hasasneh, Ian Bell, and Chris Jesshope. Asynchronous arbiter for micro-threaded chip
multiprocessors. Journal of Systems Architecture, 53(5-6):253–262, 2007. ISSN 1383-7621.
Available from: http://www.sciencedirect.com/science/article/pii/S1383762106001263,
doi:10.1016/j.sysarc.2006.10.004.

http://dx.doi.org/10.1109/L-CA.2009.4
http://dx.doi.org/10.1109/MC.2007.192
http://dx.doi.org/10.1109/MC.2007.192
http://dx.doi.org/10.1109/HPCA.2007.346190
http://golang.org/doc/go_lang_faq.html
http://golang.org/doc/go_lang_faq.html
http://dx.doi.org/10.1109/ICDE.2000.839382
http://dx.doi.org/10.1007/s10766-009-0121-x
http://dx.doi.org/10.1007/s10766-009-0121-x
http://dx.doi.org/10.1145/42411.42415
http://dx.doi.org/10.1145/263580.263599
http://dx.doi.org/10.3990/1.9789036530217
http://dx.doi.org/10.1145/4472.4478
http://dx.doi.org/10.1016/j.sysarc.2006.10.004

356 GENERAL BIBLIOGRAPHY

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR formalism for
artificial intelligence. In Proc. 3rd International Joint Conference on Artificial Intelligence,
pages 235–245. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1973.

[HBT07] Michael Haller, Mark Billinghurst, and Bruce Thomas, editors. Emerging Technologies of
Augmented Reality: Interfaces and Design. IGI Global, 2007. ISBN 9781599040660. doi:
10.4018/978-1-59904-066-0.

[HEV+98] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and Jochen Liedtke.
The mungi single-address-space operating system. Software: Practice and Experience, 28
(9):901–928, 1998. ISSN 1097-024X. doi:10.1002/(SICI)1097-024X(19980725)28:9<901::
AID-SPE181>3.0.CO;2-7.

[HF88] R. H. Halstead, Jr. and T. Fujita. MASA: a multithreaded processor architecture for parallel
symbolic computing. SIGARCH Comput. Archit. News, 16:443–451, May 1988. ISSN 0163-
5964. doi:10.1145/633625.52449.

[HJS+11] Stephan Herhut, Carl Joslin, Sven-Bodo Scholz, Raphael Poss, and Clemens Grelck. Concur-
rent non-deferred reference counting on the Microgrid: First experiences. In J. Haage and
M. Morazán, editors, Implementation and Application of Functional Languages, volume 6647
of Lecture Notes in Computer Science, pages 185–202. Springer Berlin / Heidelberg, 2011.
ISBN 978-3-642-24275-5. doi:10.1007/978-3-642-24276-2_12.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21:666–677, August
1978. ISSN 0001-0782. doi:10.1145/359576.359585.

[Hoa85] C. A. R. Hoare. Communicating sequential processes. Prentice Hall, 1985. ISBN 0-13-153289-8.
Available from: http://www.usingcsp.com/cspbook.pdf.

[Hof99] Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books; 20 Anv
edition, February 1999. ISBN 978-0465026562.

[Hol89] Herman Hollerith. An Electric Tabulating System. PhD thesis, Columbia University, 1889.
Available from: http://www.columbia.edu/cu/computinghistory/tabulator.html.

[HV05] Jon Haas and Pete Vogt. Fully-buffered DIMM technology moves enterprise platforms to the
next level. Technology@Intel Magazine, March 2005.

[HWC04] J. Henkel, W. Wolf, and S. Chakradhar. On-chip networks: a scalable, communication-centric
embedded system design paradigm. In Proc. 17th International Conference on VLSI Design,
pages 845–851, 2004. doi:10.1109/ICVD.2004.1261037.

[IBMa] IBM. XL C/C++ v8.0 for AIX: Extensions for GNU C compatibility. Avail-
able from: http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/topic/com.ibm.
xlcpp8a.doc/language/ref/gcc_cext.htm#gcc_cext [cited September 2011].

[IBMb] IBM. XL C/C++ v8.0 for AIX: The typeof operator. Available from: http:
//publib.boulder.ibm.com/infocenter/comphelp/v8v101/topic/com.ibm.xlcpp8a.doc/
language/ref/typeof_operator.htm [cited September 2011].

[IEE08] IEEE Standards Association. IEEE Std. 1003.1-2008, Information Technology – Portable
Operating System Interface (POSIX®). IEEE, 2008.

[II99] International Standards Organization and International Electrotechnical Commission.
ISO/IEC 9899:1999(E), Programming Languages – C. American National Standards In-
stitute (ANSI), 11 West 42nd Street, New York, New York 1O036, second edition, December
1999.

[II03] International Standards Organization and International Electrotechnical Commission.
ISO/IEC 14882:2003, Programming languages – C++. American National Standards In-
stitute (ANSI), 11 West 42nd Street, New York, New York 1O036, second edition, October
2003. Available from: http://www.open-std.org/jtc1/sc22/wg21/.

[II09] International Standards Organization and International Electrotechnical Commission.
ISO/IEC 9945:2009, Information technology – Portable Operating System Interface
(POSIX®) Base Specifications, Issue 7. American National Standards Institute (ANSI),
11 West 42nd Street, New York, New York 1O036, 2009.

http://dx.doi.org/10.4018/978-1-59904-066-0
http://dx.doi.org/10.4018/978-1-59904-066-0
http://dx.doi.org/10.1002/(SICI)1097-024X(19980725)28:9<901::AID-SPE181>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-024X(19980725)28:9<901::AID-SPE181>3.0.CO;2-7
http://dx.doi.org/10.1145/633625.52449
http://dx.doi.org/10.1007/978-3-642-24276-2_12
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1109/ICVD.2004.1261037

GENERAL BIBLIOGRAPHY 357

[II11a] International Standards Organization and International Electrotechnical Commission.
ISO/IEC 14882:2011, Programming languages – C++. American National Standards In-
stitute (ANSI), 11 West 42nd Street, New York, New York 1O036, first edition, September
2011. Available from: http://www.open-std.org/jtc1/sc22/wg21/.

[II11b] International Standards Organization and International Electrotechnical Commission.
ISO/IEC 9899:2011, Programming Languages – C. American National Standards Institute
(ANSI), 11 West 42nd Street, New York, New York 1O036, first edition, December 2011.
Available from: http://www.open-std.org/jtc1/sc22/wg14/.

[Ili61] J.K. Iliffe. The use of the genie system in numerical calculation. Annual Review in Automatic
Programming, 2:1–28, 1961. ISSN 0066-4138. Available from: http://www.sciencedirect.
com/science/article/pii/S0066413861800025, doi:10.1016/S0066-4138(61)80002-5.

[Ins95] Institute of Electrical and Electronic Engineers, Inc. Information Technology — Portable
Operating Systems Interface (POSIX) — Part: System Application Program Interface (API)
— Amendment 2: Threads Extension [C Language]. IEEE Standard 1003.1c–1995, IEEE,
New York City, New York, USA, 1995. also ISO/IEC 9945-1:1990b.

[Inta] Intel Corporation. Intel® C++ compiler options. Available from: http://software.intel.
com/sites/products/documentation/hpc/compilerpro/en-us/cpp/mac/man/icc.txt [cited
September 2011].

[Intb] Intel Corporation. Intel® C++ compiler user and reference guides: gcc* compatibil-
ity. Available from: http://software.intel.com/sites/products/documentation/hpc/
compilerpro/en-us/cpp/lin/compiler_c/bldaps_cls/common/bldaps_gcc_compat_comm.htm
[cited September 2011].

[Intc] Intel Corporation. Intel® C++ compiler user and reference guides: Intrinsics reference: Inline
assembly. Available from: http://software.intel.com/sites/products/documentation/
hpc/compilerpro/en-us/cpp/lin/compiler_c/intref_cls/common/intref_data_align_ma_
ia_linux_ia.htm [cited September 2011].

[Int11] Intel Corporation. Intel® Threading Building Blocks Reference Manual, 2011. Available from:
http://threadingbuildingblocks.org/documentation.php.

[Jes01] C. Jesshope. Implementing an efficient vector instruction set in a chip multi-processor using
micro-threaded pipelines. In Proc. 6th Australasian Computer Systems Architecture Confer-
ence (ACSAC’01), pages 80–88. IEEE, 2001. ISBN 0-7695-0954-1. doi:10.1109/ACAC.2001.
903363.

[Jes03] Chris Jesshope. Multi-threaded microprocessors – evolution or revolution. In Amos Omondi
and Stanislav Sedukhin, editors, Advances in Computer Systems Architecture, volume 2823
of Lecture Notes in Computer Science, pages 21–45. Springer Berlin / Heidelberg, 2003. doi:
10.1007/978-3-540-39864-6_4.

[Jes04] Chris Jesshope. Scalable instruction-level parallelism. In Andy Pimentel and Stamatis Vas-
siliadis, editors, Computer Systems: Architectures, Modeling, and Simulation, volume 3133
of Lecture Notes in Computer Science, pages 383–392. Springer Berlin / Heidelberg, 2004.
doi:10.1007/978-3-540-27776-7_40.

[Jes05] C.R. Jesshope. Microgrids – the exploitation of massive on-chip concurrency. In Lu-
cio Grandinetti, editor, Grid Computing The New Frontier of High Performance Comput-
ing, volume 14 of Advances in Parallel Computing, pages 203–223. North-Holland, 2005.
ISSN 0927-5452. Available from: http://www.sciencedirect.com/science/article/pii/
S0927545205800127, doi:10.1016/S0927-5452(05)80012-7.

[Jes06a] Chris R. Jesshope. µTC - an intermediate language for programming chip multiprocessors. In
Chris Jesshope and Colin Egan, editors, Advances in Computer Systems Architecture, volume
4186 of Lecture Notes in Computer Science, pages 147–160. Springer Berlin / Heidelberg,
2006. ISBN 978-3-540-40056-1. doi:10.1007/11859802_13.

[Jes06b] C.R. Jesshope. Microthreading, a model for distributed instruction-level concurrency. Parallel
Processing Letters, 16(2):209–228, 2006.

http://dx.doi.org/10.1016/S0066-4138(61)80002-5
http://dx.doi.org/10.1109/ACAC.2001.903363
http://dx.doi.org/10.1109/ACAC.2001.903363
http://dx.doi.org/10.1007/978-3-540-39864-6_4
http://dx.doi.org/10.1007/978-3-540-39864-6_4
http://dx.doi.org/10.1007/978-3-540-27776-7_40
http://dx.doi.org/10.1016/S0927-5452(05)80012-7
http://dx.doi.org/10.1007/11859802_13

358 GENERAL BIBLIOGRAPHY

[Jes08a] Chris Jesshope. Operating systems in silicon and the dynamic management of resources in
many-core chips. Parallel Processing Letters, 18(2):257–274, 2008.

[Jes08b] C.R. Jesshope. A model for the design and programming of multi-cores. In Lucio Grandinetti,
editor, High Performance Computing and Grids in Action, number 16 in Advances in Parallel
Computing, pages 37–55. IOS Press, 2008. ISBN 978-1-58603-839-7. Available from: http:
//dare.uva.nl/record/288698.

[JIS] JISC. OpenIndiana. Available from: http://openindiana.org/ [cited October 2011].

[JL00] C. Jesshope and B. Luo. Micro-threading: a new approach to future RISC. In Proc. 5th
Australasian Computer Architecture Conference (ACAC’00), pages 34–41. IEEE, 2000. ISBN
0-7695-0512-0. doi:10.1109/ACAC.2000.824320.

[JLI98] Trent Jaeger, Jochen Liedtke, and Nayeem Islam. Operating system protection for fine-
grained programs. In Proc. 7th conference on USENIX Security Symposium - Volume 7,
page 11. USENIX Association, Berkeley, CA, USA, 1998. Available from: http://usenix.
net/publications/library/proceedings/sec98/full_papers/jaeger/jaeger.pdf.

[JLZ09a] Chris Jesshope, Mike Lankamp, and Li Zhang. Evaluating CMPs and their memory architec-
ture. In Architecture of Computing Systems – ARCS 2009, volume 5455/2009 of Lecture Notes
in Computer Science, pages 246–257. Springer Berlin / Heidelberg, 2009. ISBN 978-3-642-
00453-7. ISSN 0302-9743 (Print) 1611-3349 (Online). doi:10.1007/978-3-642-00454-4_24.

[JLZ09b] Chris Jesshope, Mike Lankamp, and Li Zhang. The Implementation of an SVP Many-core
Processor and the Evaluation of its Memory Architecture. ACM SIGARCH Computer Archi-
tecture News, 37(2):38–45, 2009. ISSN 0163-5964. doi:10.1145/1577129.1577136.

[JMW+03] Adrian Jacobs, Jonathan Mather, Robert Winlow, David Montgomery, Graham Jones, Morgan
Willis, Martin Tillin, Lyndon Hill, Marina Khazova, Heather Stevenson, and Grant Bourhill.
2D/3D switchable displays. Sharp Technical Journal, 4, 2003. Available from: http://www.
sharp.co.jp/corporate/rd/journal-85/pdf/85-04.pdf.

[Joe96] Christopher F. Joerg. The Cilk system for parallel multithreaded computing. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1996.

[JPvT08] Chris Jesshope, Jean-Marc Philippe, and Michiel van Tol. An architecture and protocol for the
management of resources in ubiquitous and heterogeneous systems based on the SVP model
of concurrency. In Embedded Computer Systems: Architectures, Modeling, and Simulation,
pages 218–228, 2008. ISBN 978-3-540-70549-9.

[JR81] S. C. Johnson and D. M. Ritchie. The C language calling sequence. Computing Sci-
ence Technical Report 102, Bell Laboratories, September 1981. Available from: http:
//cm.bell-labs.com/cm/cs/who/dmr/clcs.ps.

[JS08] Chris Jesshope and Alex Shafarenko. Concurrency Engineering. In Proc. 13th IEEE Asia-
Pacific Computer Systems Architecture Conference, 2008. ISBN 978-1-4244-2683-6.

[JYS+12] Min Kyu Jeong, Doe Hyun Yoon, Dam Sunwoo, Mike Sullivan, Ikhwan Lee, and Mattan
Erez. Balancing DRAM locality and parallelism in shared memory CMP systems. In Proc.
18th International Symposium on High Performance Computer Architecture, HPCA’12, pages
1–12. IEEE, February 2012. ISSN 1530-0897. doi:10.1109/HPCA.2012.6168944.

[KDH+05] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. Introduction
to the Cell multiprocessor. IBM Journal of Research and Development, 49(4.5):589–604, July
2005. ISSN 0018-8646. doi:10.1147/rd.494.0589.

[Ken08] Randall C. Kennedy. Fat, fatter, fattest: Microsoft’s kings of bloat. In-
foWorld, April 2008. Available from: http://www.infoworld.com/t/applications/
fat-fatter-fattest-microsofts-kings-bloat-278.

[Khr09] Khronos OpenCL Working Group. The OpenCL specification, version 1.0.43, 2009. Available
from: http://www.khronos.org/registry/cl/specs/opencl-1.0.43.pdf.

[Kic91] G. Kiczales. Towards a new model of abstraction in software engineering. In Proc. 1991
International Workshop on Object Orientation in Operating Systems, pages 127–128. IEEE,
October 1991. doi:10.1109/IWOOOS.1991.183036.

http://dx.doi.org/10.1109/ACAC.2000.824320
http://dx.doi.org/10.1007/978-3-642-00454-4_24
http://dx.doi.org/10.1145/1577129.1577136
http://dx.doi.org/10.1109/HPCA.2012.6168944
http://dx.doi.org/10.1147/rd.494.0589
http://dx.doi.org/10.1109/IWOOOS.1991.183036

GENERAL BIBLIOGRAPHY 359

[Kis02] Laszlo B. Kish. End of moore’s law: thermal (noise) death of integration in micro and
nano electronics. Physics Letters A, 305(3–4):144–149, 2002. ISSN 0375-9601. doi:
10.1016/S0375-9601(02)01365-8.

[KISL04] Mazen Kharbutli, Keith Irwin, Yan Solihin, and Jaejin Lee. Using prime numbers for cache
indexing to eliminate conflict misses. In Proceedings of the 10th International Symposium
on High Performance Computer Architecture (HPCA’04), pages 288–299. IEEE Computer
Society, Washington, DC, USA, 2004. ISBN 0-7695-2053-7. doi:10.1109/HPCA.2004.10015.

[KJS+02] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja, and
A. Hemani. A network on chip architecture and design methodology. In Proc. IEEE Com-
puter Society Annual Symposium on VLSI, pages 105–112, 2002. doi:10.1109/ISVLSI.2002.
1016885.

[Kla00] Alexander Klaiber. The technology behind Crusoe processors. Transmeta Corporation
White Paper, January 2000. Available from: http://scholar.google.nl/scholar?cluster=
16353518713752049801.

[KMZS08] Henry Kasim, Verdi March, Rita Zhang, and Simon See. Survey on parallel programming
model. In Network and Parallel Computing, volume 5245/2008 of Lecture Notes in Computer
Science, pages 266–275. Springer Berlin / Heidelberg, 2008.

[Knu98] Donald Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.
Addison-Wesley, third edition, 1998. ISBN 0-201-89685-0.

[Kon07] Petr Konecny. Introducing the Cray XMT. In Proc. Cray User Group meeting (CUG’07).
Cray Inc., 411 First Avenue South, Seattle, WA 9810, USA, May 2007.

[KR77] Brian W. Kernighan and Dennis M. Ritchie. The M4 macro processor. AT&T Bell Laborato-
ries, 1977.

[Lan07] M. Lankamp. Developing a Reference Implementation for a Microgrid of Microthreaded Micro-
processors. Master’s thesis, University of Amsterdam, Amsterdam, the Netherlands, August
2007. Available from: http://dist.svp-home.org/doc/mike-lankamp-ref-microgrid.pdf.

[Lan1x] Mike Lankamp. Design and Evaluation of a Multithreaded Many-Core Architecture. PhD
thesis, University of Amsterdam, 201x. To appear.

[LB08] Mike Lankamp and Thomas Bernard. Microthreads reference document (draft). Technical
report, University of Amsterdam, November 2008.

[Lea96] Doug Lea. A memory allocator, 1996. Available from: http://g.oswego.edu/dl/html/malloc.
html [cited September 2011].

[Lea10] Richard Leadbetter. Digital Foundry vs. 3DS. Eurogamer, June 2010. Available from: http:
//www.eurogamer.net/articles/digitalfoundry-vs-nintendo-3ds.

[Lei09] Charles E. Leiserson. The Cilk++ concurrency platform. In DAC ’09: Proceedings of the 46th
Annual Design Automation Conference, pages 522–527. ACM, New York, NY, USA, 2009.
ISBN 978-1-60558-497-3. doi:10.1145/1629911.1630048.

[Lev84] Steven Levy. Hackers: Heroes of the computer revolution. Anchor Press/Doubleday, 1984.
ISBN 0385191952.

[LF80] Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. J. ACM, 27(4):
831–838, October 1980. ISSN 0004-5411. doi:10.1145/322217.322232.

[LH94] B. Lee and A.R. Hurson. Dataflow architectures and multithreading. IEEE Computer, 27(8):
27–39, aug. 1994. ISSN 0018-9162. doi:10.1109/2.303620.

[Lin76] Theodore A. Linden. Operating system structures to support security and reliable software.
ACM Comput. Surv., 8:409–445, December 1976. ISSN 0360-0300. doi:10.1145/356678.
356682.

[LJ02] Bing Luo and Chris Jesshope. Performance of a micro-threaded pipeline. In Proc. 7th Asia-
Pacific conference on Computer systems architecture (CRPIT ’02), pages 83–90. Australian
Computer Society, Inc., Darlinghurst, Australia, Australia, 2002. ISBN 0-909925-84-4.

http://dx.doi.org/10.1016/S0375-9601(02)01365-8
http://dx.doi.org/10.1016/S0375-9601(02)01365-8
http://dx.doi.org/10.1109/HPCA.2004.10015
http://dx.doi.org/10.1109/ISVLSI.2002.1016885
http://dx.doi.org/10.1109/ISVLSI.2002.1016885
http://dx.doi.org/10.1145/1629911.1630048
http://dx.doi.org/10.1145/322217.322232
http://dx.doi.org/10.1109/2.303620
http://dx.doi.org/10.1145/356678.356682
http://dx.doi.org/10.1145/356678.356682

360 GENERAL BIBLIOGRAPHY

[LLV] LLVM Developers. Clang information: Language compatibility: Inline assembly. Available
from: http://clang.llvm.org/compatibility.html#inline-asm [cited September 2011].

[LNOM08] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A unified graphics
and computing architecture. IEEE Micro, 28(2):39–55, March/April 2008. ISSN 0272-1732.
doi:10.1109/MM.2008.31.

[LT02] Josh Lerner and Jean Tirole. Some simple economics of open source. The Journal of Industrial
Economics, 50(2):197–234, June 2002. ISSN 1467-6451. doi:10.1111/1467-6451.00174.

[LT04] Josh Lerner and Jean Tirole. The economics of technology sharing: Open source and beyond.
Working Paper 10956, National Bureau of Economic Research, 1050 Massachusetts Avenue,
Cambridge, MA 02138, USA, December 2004. Available from: http://www.nber.org/papers/
w10956.

[LW03] Karim Lakhani and Robert G. Wolf. Why hackers do what they do: Understanding
motivation and effort in free/open source software projects. MIT Sloan Working Paper
4425-03, Massachusetts Institute of Technology, MIT Sloan School of Management, E60-
186, 30 Memorial Drive, Cambridge, MA 02142, USA, September 2003. Available from:
http://ssrn.com/abstract=443040, doi:10.2139/ssrn.443040.

[MAG+88] S.S. Muchnick, C. Aoki, V. Ghodssi, M. Helft, M. Lee, R. Tuck, D. Weaver, and A. Wu.
Optimizing compilers for the SPARC architecture – an overview. In Compcon Spring ’88.
Thirty-Third IEEE Computer Society International Conference, Digest of Papers, pages 284–
288. IEEE, February/March 1988. doi:10.1109/CMPCON.1988.4875.

[Mat10] Andrei Matei. Towards adaptable parallel software - the Hydra runtime for SVP programs.
Master’s thesis, Vrije Universiteit Amsterdam, Faculty of Science, Department of Mathematics
and Computer Science, November 2010. Available from: http://dist.svp-home.org/doc/
andrei-matei-hydra-svp-runtime.pdf.

[MBH+02] D. T. Marr, Frank Binns, D. L. Hill, Glenn Hinton, D. A. Koufaty, J. A. Miller, and
Michael Upton. Hyper-Threading technology architecture and microarchitecture. Intel
Technology Journal, 6(1):1–12, 2002. Available from: http://www.mendeley.com/research/
hyperthreading-technology-architecture-and-microarchitecture/.

[MBKQ96] Marshall K. McKusick, Keith Bostic, Michael J. Karels, and John S. Quartermain. The Design
and Implementation of the 4.4BSD Operating System. Addison-Wesley, 1996. ISBN 978-0-
201-54979-9.

[MBRS11] Jeffrey C. Mogul, Andrew Baumann, Timothy Roscoe, and Livio Soares. Mind the gap:
reconnecting architecture and OS research. In Proc. 13th USENIX conference on Hot topics
in operating systems, HotOS’13. USENIX Association, Berkeley, CA, USA, 2011.

[McK99] Marshall K. McKusick. Open Sources: Voices from the Open Source Revolution, chapter
Twenty Years of Berkeley Unix - From AT&T-Owned to Freely Redistributable. O’Reilly &
Associates, 1999. ISBN 978-1-565-92582-3. Available from: http://oreilly.com/catalog/
opensources/book/kirkmck.html.

[McM86] F.H. McMahon. The livermore FORTRAN kernels: A computer test of the numerical perfor-
mance range. Technical Report UCRL-53745, Lawrence Livermore National Lab., CA (USA),
Dec 1986.

[MCS91] John M. Mellor-Crummey and Michael L. Scott. Synchronization without contention. SIG-
PLAN Not., 26(4):269–278, 1991. ISSN 0362-1340. doi:10.1145/106973.106999.

[Mes09] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 2.2.
High Performance Computing Center Stuttgart (HLRS), September 2009.

[Mil68] Robert B. Miller. Response time in man-computer conversational transactions. In Proceedings
of the December 9-11, 1968, fall joint computer conference, part I, AFIPS ’68 (Fall, part I),
pages 267–277. ACM, New York, NY, USA, 1968. doi:10.1145/1476589.1476628.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., 1980.
ISBN 0-387-10235-3.

http://dx.doi.org/10.1109/MM.2008.31
http://dx.doi.org/10.1111/1467-6451.00174
http://dx.doi.org/10.2139/ssrn.443040
http://dx.doi.org/10.1109/CMPCON.1988.4875
http://dx.doi.org/10.1145/106973.106999
http://dx.doi.org/10.1145/1476589.1476628

GENERAL BIBLIOGRAPHY 361

[Mil90] Robin Milner. Functions as processes. In Michael Paterson, editor, Automata, Languages and
Programming, volume 443 of Lecture Notes in Computer Science, pages 167–180. Springer
Berlin / Heidelberg, 1990. ISBN 978-3-540-52826-5. doi:10.1007/BFb0032030.

[MMB07] Orlando Moreira, Jacob Jan-David Mol, and Marco Bekooij. Online resource management in a
multiprocessor with a network-on-chip. In Proc. 2007 ACM symposium on Applied computing,
SAC ’07, pages 1557–1564. ACM, 2007. ISBN 1-59593-480-4. doi:10.1145/1244002.1244335.

[MNN04] Marshall Kirk McKusick and George V Neville-Neil. Design And Implementation Of The
FreeBSD Operating System. Addison Wesley, 2004. 720 pp.

[Mor66] G.M. Morton. A computer oriented geodetic data base; and a new technique in file sequencing.
Technical report, International Business Machines Ltd., Ottawa, Canada, 1966.

[MPW92a] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Infor-
mation and Computation, 100(1):1–40, 1992. ISSN 0890-5401. doi:10.1016/0890-5401(92)
90008-4.

[MPW92b] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, II. Infor-
mation and Computation, 100(1):41–77, 1992. ISSN 0890-5401. doi:10.1016/0890-5401(92)
90009-5.

[MRL+10] Timothy G. Mattson, Michael Riepen, Thomas Lehnig, Paul Brett, Werner Haas, Patrick
Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar, Greg Ruhl, and Saurabh Dighe. The
48-core scc processor: the programmer’s view. In Proc. 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis, SC’10,
pages 1–11. IEEE Computer Society, Washington, DC, USA, 2010. ISBN 978-1-4244-7559-9.
doi:10.1109/SC.2010.53.

[MS90] David May and Roger Shepherd. Occam and the transputer. In Advances in Petri Nets
1989, volume 424 of Lecture Notes in Computer Science, pages 329–353. Springer Berlin /
Heidelberg, 1990. ISBN 978-3-540-52494-6. ISSN 0302-9743. doi:10.1007/3-540-52494-0.

[MS09] Jiayuan Meng and K. Skadron. Avoiding cache thrashing due to private data placement in
last-level cache for manycore scaling. In IEEE International Conference on Computer Design
(ICCD’09), pages 282–288. IEEE, October 2009. ISBN 978-1-4244-5029-9. ISSN 1063-6404.
doi:10.1109/ICCD.2009.5413143.

[MSA+83] J. McGraw, S. Skedzielewski, S. Allan, D. Grit, R. Oldehoeft, J. Glauert, I. Dobes, and
P. Hohensee. SISAL: streams and iteration in a single-assignment language. language reference
manual, version 1.2, revision 1. Technical Report LLL/M-146-Rev.1, Lawrence Livermore
National Lab., CA (USA); Colorado State Univ., Fort Collins (USA). Dept. of Computer
Science; East Anglia Univ. (UK). School of Information Sciences; Manchester Univ. (UK).
Computer Center; Digital Equipment Corp., Nashua, NH (USA), March 1983. Available from:
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5065243.

[MSS10] Nick Mitchell, Edith Schonberg, and Gary Sevitsky. Four trends leading to java runtime bloat.
IEEE Software, 27:56–63, 2010. ISSN 0740-7459. doi:10.1109/MS.2010.7.

[NA89] R. S. Nikhil and Arvind. Can dataflow subsume von Neumann computing? SIGARCH
Comput. Archit. News, 17(3):262–272, 1989. ISSN 0163-5964. doi:10.1145/74926.74955.

[Nie94] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, new edition, November 1994. ISBN
978-0125184069. Available from: http://www.useit.com/papers/responsetime.html.

[NMRW02] George Necula, Scott McPeak, Shree Rahul, and Westley Weimer. Cil: Intermediate language
and tools for analysis and transformation of C programs. In R. Horspool, editor, Compiler
Construction, volume 2304 of Lecture Notes in Computer Science, pages 209–265. Springer
Berlin / Heidelberg, 2002. doi:10.1007/3-540-45937-5_16.

[NR98] Robert W. Numrich and John Reid. Co-array fortran for parallel programming. SIGPLAN
Fortran Forum, 17:1–31, August 1998. ISSN 1061-7264. doi:10.1145/289918.289920.

[NVI09] NVIDIA Corporation. NVIDIA’s next generation CUDA compute architecture: Fermi.
Whitepaper, 2009. Available from: http://www.nvidia.com/content/PDF/fermi_white_
papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf.

http://dx.doi.org/10.1007/BFb0032030
http://dx.doi.org/10.1145/1244002.1244335
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90009-5
http://dx.doi.org/10.1016/0890-5401(92)90009-5
http://dx.doi.org/10.1109/SC.2010.53
http://dx.doi.org/10.1007/3-540-52494-0
http://dx.doi.org/10.1109/ICCD.2009.5413143
http://dx.doi.org/10.1109/MS.2010.7
http://dx.doi.org/10.1145/74926.74955
http://dx.doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.1145/289918.289920

362 GENERAL BIBLIOGRAPHY

[Ope08] OpenMP Architecture Review Board. OpenMP application program interface, version 3.0,
2008. Available from: http://www.openmp.org/mp-documents/spec30.pdf.

[Ora11] Oracle Corporation. Oracle® Solaris Studio 12.2: C User’s Guide, June 2011. Available
from: http://download.oracle.com/docs/cd/E18659_01/pdf/821-1384.pdf.

[PC90] Gregory M. Papadopoulos and David E. Culler. Monsoon: an explicit token-store archi-
tecture. SIGARCH Comput. Archit. News, 18:82–91, May 1990. ISSN 0163-5964. doi:
10.1145/325096.325117.

[Pét34] Rózsa Péter. Über den Zussammenhang der verschiedenen Begriffe der rekursiven Funktion.
Mathematische Annale, 110:612–632, 1934.

[PF05] Matt Pharr and Randima Fernando, editors. GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation. Addison-Wesley Professional,
March 2005. ISBN 978-0321335593.

[PHA10] Heidi Pan, Benjamin Hindman, and Krste Asanovic. Composing parallel software efficiently
with lithe. In PLDI ’10: Proceedings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation, pages 376–387. ACM, Toronto, Canada, 2010.

[Pig01] Steven Pigeon. Contributions à la compression de données. PhD thesis, Université de Mon-
tréal, December 2001.

[PJ96] Charles E. Perkins and David B. Johnson. Mobility support in ipv6. In Proceedings of the 2nd
annual international conference on Mobile computing and networking, MobiCom ’96, pages
27–37. ACM, New York, NY, USA, 1996. ISBN 0-89791-872-X. doi:10.1145/236387.236400.

[PJ10] Raphael Poss and Chris Jesshope. Towards scalable implicit communication and synchro-
nization. In The First Workshop on Advances in Message Passing (AMP’10). Toronto,
Canada, June 2010. Available from: http://www.cs.rochester.edu/u/cding/amp/papers/
pos/Towards%20Scalable%20Implicit%20Communication%20and%20Synchronization.pdf.

[PJCSH87] Simon L. Peyton Jones, Chris Clack, John Salkild, and Mark Hardie. GRIP—a high-
performance architecture for parallel graph reduction. In Gilles Kahn, editor, Functional
Programming Languages and Computer Architecture, volume 274 of Lecture Notes in Com-
puter Science, pages 98–112. Springer Berlin / Heidelberg, 1987. ISBN 0-387-18317-5.
doi:10.1007/3-540-18317-5_7.

[PLU+12] Raphael Poss, Mike Lankamp, M. Irfan Uddin, Jaroslav Sýkora, and Leoš Kafka. Heteroge-
neous integration to simplify many-core architecture simulations. In Proc. 2012 Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools, RAPIDO ’12, pages
17–24. ACM, 2012. ISBN 978-1-4503-1114-4. doi:10.1145/2162131.2162134.

[PLY+12] Raphael Poss, Mike Lankamp, Qiang Yang, Jian Fu, Michiel W. van Tol, and Chris Jesshope.
Apple-CORE: Microgrids of SVP cores (invited paper). In Proc. 15th Euromicro Conference
on Digital System Design. IEEE, Cesme, Izmir, Turkey, September 2012. (to appear).

[Pol99] Fred J. Pollack. New microarchitecture challenges in the coming generations of CMOS process
technologies (keynote address). In Proc. 32nd annual ACM/IEEE international symposium on
Microarchitecture, MICRO 32. IEEE Computer Society, Washington, DC, USA, 1999. ISBN
0-7695-0437-X.

[PR86] Heinz-Otto Peitgen and Peter Richter. The Beauty of Fractals. Springer-Verlag, Heidelberg,
1986. ISBN 0-387-15851-0.

[Rad62] Tibor Radó. On non-computable functions. Bell Systems Technical Journal, 41(3):877–884,
May 1962. Available from: http://www.alcatel-lucent.com/bstj/vol41-1962/articles/
bstj41-3-877.pdf.

[Ran82] Brian Randell. The Origins of digital computers: selected papers. Texts and monographs in
computer science. Springer-Verlag, 3rd edition, 1982. ISBN 9780387113197.

[Rau91] B. Ramakrishna Rau. Pseudo-randomly interleaved memory. SIGARCH Comput. Archit.
News, 19:74–83, April 1991. ISSN 0163-5964. doi:10.1145/115953.115961.

[Red] Red Hat. Newlib. Available from: http://www.sourceware.org/newlib/ [cited October 2011].

http://dx.doi.org/10.1145/325096.325117
http://dx.doi.org/10.1145/325096.325117
http://dx.doi.org/10.1145/236387.236400
http://dx.doi.org/10.1007/3-540-18317-5_7
http://dx.doi.org/10.1145/2162131.2162134
http://dx.doi.org/10.1145/115953.115961

GENERAL BIBLIOGRAPHY 363

[Rei07] J. Reinders. Intel Threading Building Blocks: outfitting C++ for multi-core processor paral-
lelism. O’Reilly Series. O’Reilly, 2007. ISBN 9780596514808. LCCN 2007299881.

[RH90] Ram Raghavan and John P. Hayes. On randomly interleaved memories. In Proceedings of
the 1990 ACM/IEEE conference on Supercomputing, pages 49–58. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1990. ISBN 0-89791-412-0. Available from: http://portal.
acm.org/citation.cfm?id=110382.110396.

[RH11] Stuart Rance and Ashley Hanna. ITIL® glossary and abbreviations - English. ITIL glossary,
IT Infrastructure Library, July 2011. Available from: http://www.itil-officialsite.com/
InternationalActivities/TranslatedGlossaries.aspx.

[Rie07] D. Riehle. The economic motivation of open source software: Stakeholder perspectives. Com-
puter, 40(4):25–32, april 2007. ISSN 0018-9162. doi:10.1109/MC.2007.147.

[RML+01] R. Ronen, A. Mendelson, K. Lai, Shih-Lien Lu, F. Pollack, and J.P. Shen. Coming challenges
in microarchitecture and architecture. Proceedings of the IEEE, 89(3):325–340, mar 2001.
ISSN 0018-9219. doi:10.1109/5.915377.

[RT74] Dennis M. Ritchie and Ken Thompson. The UNIX time-sharing system. Commun. ACM, 17:
365–375, July 1974. ISSN 0001-0782. doi:10.1145/361011.361061.

[S.03] Sandeep S. GCC Inline Assembly HOWTO, v0.3 edition, March 2003. Available from: http:
//www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html.

[SA05] Lawrence Spracklen and Santosh G. Abraham. Chip multithreading: opportunities and chal-
lenges. In Proc 11th International Symposium on High-Performance Computer Architecture,
HPCA’05, pages 248–252. IEEE, February 2005. ISSN 1530-0897. doi:10.1109/HPCA.2005.10.

[Sal65] Jerome H. Saltzer. CTSS technical notes. Technical Report MAC-TR-16, Massachusetts
Institute of Technology – Project MAC, 1965.

[SCB+98] Allan Snavely, Larry Carter, Jay Boisseau, Amit Majumdar, Kang Su Gatlin, Nick Mitchell,
John Feo, and Brian Koblenz. Multi-processor performance on the Tera MTA. In Supercom-
puting ’98: Proceedings of the 1998 ACM/IEEE conference on Supercomputing, pages 1–8.
IEEE Computer Society, Washington, DC, USA, 1998. ISBN 0-89791-984-X.

[SCS+08] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep Dubey,
Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Espasa, Ed Grochowski,
Toni Juan, and Pat Hanrahan. Larrabee: a many-core x86 architecture for visual computing.
ACM Trans. Graph., 27:18:1–18:15, August 2008. ISSN 0730-0301. doi:10.1145/1360612.
1360617.

[SEM09] Dimitris Saougkos, Despina Evgenidou, and George Manis. Specifying loop transformations
for C2µTC source-ro-source compiler. In Proc. of 14th Workshop on Compilers for Parallel
Computing (CPC’09), Zürich, Switzerland. IBM Research Center, January 2009.

[Sez93] André Seznec. A case for two-way skewed-associative caches. SIGARCH Comput. Archit.
News, 21:169–178, May 1993. ISSN 0163-5964. doi:10.1145/173682.165152.

[SGJ+12] M. Shah, R. Golla, P. Jordan, G. Grohoski, J. Barreh, J. Brooks, M. Greenberg, G. Levinsky,
M. Luttrell, C. Olson, Z. Samoail, M. Smittle, and T. Ziaja. SPARC T4: A dynamically
threaded server-on-a-chip. IEEE Micro, PP(99):1, 2012. ISSN 0272-1732. doi:10.1109/MM.
2012.1.

[SGK+85] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and
implementation of the Sun network filesystem. In Proc. 1985 USENIX Conference, pages
119–130. Portland, OR, USA, 1985.

[SHJ11] Sven-Bodo Scholz, Stephan Herhut, and Carl Joslin. Data parallelism and functional par-
allelism on the Microgrid using Single Assignment C. Deliverable 4.4, issue 1.0, Architec-
ture Paradigms and Programming Languages for Efficient programming of multiple COREs
(Apple-CORE, EU FP7-215216), July 2011. Available from: http://www.apple-core.info/
deliverables.

[Shn84] Ben Shneiderman. Response time and display rate in human performance with computers.
ACM Comput. Surv., 16:265–285, September 1984. ISSN 0360-0300. doi:10.1145/2514.2517.

http://dx.doi.org/10.1109/MC.2007.147
http://dx.doi.org/10.1109/5.915377
http://dx.doi.org/10.1145/361011.361061
http://dx.doi.org/10.1109/HPCA.2005.10
http://dx.doi.org/10.1145/1360612.1360617
http://dx.doi.org/10.1145/1360612.1360617
http://dx.doi.org/10.1145/173682.165152
http://dx.doi.org/10.1109/MM.2012.1
http://dx.doi.org/10.1109/MM.2012.1
http://dx.doi.org/10.1145/2514.2517

364 GENERAL BIBLIOGRAPHY

[SHZO07] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan primitives for
GPU computing. In Timo Aila and Mark Segal, editors, Graphics Hardware 2007, pages
97–106. ACM, Augustus 2007.

[Sim00] D. Sima. The design space of register renaming techniques. Micro, IEEE, 20(5):70–83, Septem-
ber/October 2000. ISSN 0272-1732. doi:10.1109/40.877952.

[Sir09] John Siracusa. Grand central dispatch. Ars Technica, Mac OS X 10.6 Snow Leopard: the
Ars Technica review, 2009. Available from: http://arstechnica.com/apple/reviews/2009/
08/mac-os-x-10-6.ars/12.

[SJ96] Randy Show and Theodore Johnson. Distributed operating systems & algorithms. Addison
Wesley, 1996. ISBN 0201498383.

[SKRC10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop dis-
tributed file system. In Proc. 26th Symposium on Massive Storage Systems and Technologies
(MSST’10). IEEE Press, Incline Village, Nevada, May 2010. ISBN 978-1-4244-7153-9.

[SLJ+04] Mike Salib, Ling Liao, Richard Jones, Mike Morse, Ansheng Liu, Dean Samara-Rubio, Drew
Alduino, and Mario Paniccia. Silicon photonics. Intel Technology Journal, 8(2):143–160, May
2004. ISSN 1535-864X.

[SM11] Dimitris Saougkos and George Manis. Run-time scheduling with the C2uTC parallelizing
compiler. In 2nd Workshop on Parallel Programming and Run-Time Management Techniques
for Many–Core Architectures, in Workshop Proceedings of the 24th Conference on Computing
Systems (ARCS 2011), Lecture Notes in Computer Science, pages 151–157. Springer, 2011.

[Smi81] B.J. Smith. Architecture and applications of the HEP multiprocessor computer system. Proc.
SPIE Int. Soc. Opt. Eng.; (United States), 298:241–248, 1981.

[SPB+08] Adrian Schüpbach, Simon Peter, Andrew Baumann, Timothy Roscoe, Paul Barham, Tim
Harris, and Rebecca Isaacs. Embracing diversity in the barrelfish manycore operating system.
In Proceedings of the Workshop on Managed Many-Core Systems. ACM, June 2008.

[Sut05] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in soft-
ware. Dr. Dobb’s Journal, 30(3), 2005. Available from: http://www.gotw.ca/publications/
concurrency-ddj.htm.

[Tab10] Hiroko Tabushi. Nintendo to make 3-D version of its DS handheld game. The New York Times,
March 2010. Available from: http://www.nytimes.com/2010/03/24/technology/24nintendo.
html.

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading: maxi-
mizing on-chip parallelism. SIGARCH Comput. Archit. News, 23:392–403, May 1995. ISSN
0163-5964. doi:10.1145/225830.224449.

[Tho65] James E. Thornton. Parallel operation in the Control Data 6600. In Proceedings of the October
27-29, 1964, fall joint computer conference, part II: very high speed computer systems, AFIPS
’64 (Fall, part II), pages 33–40. ACM, New York, NY, USA, 1965. doi:10.1145/1464039.
1464045.

[TJS95] M. Tremblay, B. Joy, and K. Shin. A three dimensional register file for superscalar processors.
In Proc. 28th Hawaii International Conference on System Sciences, volume 1, pages 191–201,
January 1995. doi:10.1109/HICSS.1995.375394.

[TLYL04] Zhangxi Tan, Chuang Lin, Hao Yin, and Bo Li. Optimization and benchmark of cryptographic
algorithms on network processors. IEEE Micro, 24(5):55–69, September/October 2004. ISSN
0272-1732. doi:10.1109/MM.2004.54.

[TP06] Scott E. Thompson and Srivatsan Parthasarathy. Moore’s law: the future of Si microelec-
tronics. Materials Today, 9(6):20–25, 2006. ISSN 1369-7021. doi:10.1016/S1369-7021(06)
71539-5.

[TR86] Andrew S. Tanenbaum and Robbert Van Renesse. Research issues in distributed operating
systems. In Computing in High-Energy Physics, pages 35–46. North-Holland, 1986.

http://dx.doi.org/10.1109/40.877952
http://dx.doi.org/10.1145/225830.224449
http://dx.doi.org/10.1145/1464039.1464045
http://dx.doi.org/10.1145/1464039.1464045
http://dx.doi.org/10.1109/HICSS.1995.375394
http://dx.doi.org/10.1109/MM.2004.54
http://dx.doi.org/10.1016/S1369-7021(06)71539-5
http://dx.doi.org/10.1016/S1369-7021(06)71539-5

GENERAL BIBLIOGRAPHY 365

[TS06] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall, 2nd edition, June 2006. ISBN 978-0-13-239227-3.

[TVR85] Andrew S. Tanenbaum and Robbert Van Renesse. Distributed operating systems. ACM
Comput. Surv., 17:419–470, December 1985. ISSN 0360-0300. doi:10.1145/6041.6074.

[UPC05] UPC Consortium. UPC Language Specifications, v1.2. Technical Report LBNL-59208,
Lawrence Berkeley National Lab, May 2005.

[UvTJ11] M. I. Uddin, M. W. van Tol, and C. R. Jesshope. High level simulation of SVP many-
core systems. Parallel Processing Letters, 21(4):413–438, December 2011. ISSN 0129-6264.
doi:10.1142/S0129626411000308.

[van06] Michiel W. van Tol. Exceptions in a microthreaded architecture. Master’s thesis, Uni-
versity of Amsterdam, December 2006. Available from: http://dist.svp-home.org/doc/
michiel-van-tol-exceptions.ps.

[VD05] Hans Vandierendonck and Koen De Bosschere. XOR-based hash functions. IEEE Trans.
Comput., 54(7):800–812, July 2005.

[vEB90] Peter van Emde Boas. Machine models and simulations. In Handbook of theoretical computer
science (vol. A), pages 1–66. MIT Press, Cambridge, MA, USA, 1990. ISBN 0-444-88071-2.

[vECGS92] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active
messages: a mechanism for integrated communication and computation. In ISCA ’92: Proc.
19th annual International Symposium on Computer Architecture, pages 256–266. ACM, New
York, NY, USA, 1992. ISBN 0-89791-509-7. doi:10.1145/139669.140382.

[vH07] Eric von Hippel. Horizontal innovation networks–by and for users. Industrial and Corporate
Change, 16(2):293–315, May 2007. doi:10.1093/icc/dtm005.

[vHvK03] Eric von Hippel and Georg von Krogh. Open source software and the "private-collective"
innovation model: Issues for organization science. Organization Science, 14(2):209–223, 2003.
ISSN 10477039. Available from: http://www.jstor.org/stable/4135161.

[VJ07] Thuy Duong Vu and Chris R. Jesshope. Formalizing SANE virtual processor in thread
algebra. In Michael Butler, Michael Hinchey, and María Larrondo-Petrie, editors, For-
mal Methods and Software Engineering, volume 4789 of Lecture Notes in Computer Sci-
ence, pages 345–365. Springer Berlin / Heidelberg, 2007. ISBN 978-3-540-76648-3. doi:
10.1007/978-3-540-76650-6_20.

[vTJ11] Michiel W. van Tol and Chris R. Jesshope. An operating system strategy for general-purpose
parallel computing on many-core architectures. Advances in Parallel Computing, High Per-
formance Computing: From Grids and Clouds to Exascale(20):157–181, 2011. ISBN 978-1-
60750-802-1. ISSN 0927-5452. doi:10.3233/978-1-60750-803-8-157.

[vTJLP09] M. W. van Tol, C. R. Jesshope, M. Lankamp, and S. Polstra. An implementation of the
SANE Virtual Processor using POSIX threads. J. Syst. Archit., 55(3):162–169, 2009. ISSN
1383-7621.

[vTK11] Michiel W. van Tol and Juha Koivisto. Extending and implementing the self-adaptive virtual
processor for distributed memory architectures. Technical Report arXiv:1104.3876v1 [cs.DC],
University of Amsterdam and VTT, Finland, 2011. Available from: http://arxiv.org/abs/
1104.3876.

[WA09] David Wentzlaff and Anant Agarwal. Factored operating systems (fos): the case for a scalable
operating system for multicores. SIGOPS Oper. Syst. Rev., 43:76–85, April 2009. ISSN 0163-
5980. doi:10.1145/1531793.1531805.

[WCA02] Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian memory protection. In Proc. 10th
international conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’02), ASPLOS-X, pages 304–316. ACM, New York, NY, USA, 2002. ISBN
1-58113-574-2. doi:10.1145/605397.605429.

[Web00] Steven Weber. The political economy of open source software. BRIE Working Paper 140,
University of Berkeley, California, June 2000. Available from: http://brie.berkeley.edu/
publications/wp140.pdf.

http://dx.doi.org/10.1145/6041.6074
http://dx.doi.org/10.1142/S0129626411000308
http://dx.doi.org/10.1145/139669.140382
http://dx.doi.org/10.1093/icc/dtm005
http://dx.doi.org/10.1007/978-3-540-76650-6_20
http://dx.doi.org/10.1007/978-3-540-76650-6_20
http://dx.doi.org/10.3233/978-1-60750-803-8-157
http://dx.doi.org/10.1145/1531793.1531805
http://dx.doi.org/10.1145/605397.605429

366 GENERAL BIBLIOGRAPHY

[Wir95] N. Wirth. A plea for lean software. Computer, 28(2):64–68, February 1995. ISSN 0018-9162.
doi:10.1109/2.348001.

[WJ96] S.J.E. Wilton and N.P. Jouppi. Cacti: an enhanced cache access and cycle time model.
Solid-State Circuits, IEEE Journal of, 31(5):677–688, may 1996. ISSN 0018-9200. doi:
10.1109/4.509850.

[WM95] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of the obvious.
SIGARCH Comput. Archit. News, 23:20–24, March 1995. ISSN 0163-5964. doi:10.1145/
216585.216588.

[XMA+10] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, and Gary Sevitsky. Software
bloat analysis: finding, removing, and preventing performance problems in modern large-scale
object-oriented applications. In Proceedings of the FSE/SDP workshop on Future of software
engineering research, FoSER ’10, pages 421–426. ACM, New York, NY, USA, 2010. ISBN
978-1-4503-0427-6. doi:10.1145/1882362.1882448.

[YLT05] Yao Yue, Chuang Lin, and Zhangxi Tan. NPCryptBench: a cryptographic benchmark suite
for network processors. SIGARCH Comput. Archit. News, 34(1):49–56, September 2005. ISSN
0163-5964. doi:10.1145/1147349.1147359.

[YMBYG08] Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, and Philippe Gerum. Building Embedded
Linux Systems. O’Reilly Media, 2nd edition, 2008. ISBN 0596529686.

[YSP+98] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind Krishna-
murthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella, and Alex Aiken. Titanium:
a high-performance Java dialect. Concurrency: Practice and Experience, 10(11-13):825–836,
November 1998. ISSN 1096-9128. doi:10.1002/(SICI)1096-9128(199809/11)10:11/13<825::
AID-CPE383>3.0.CO;2-H.

[ZBMS10] D. Ziakas, A. Baum, R.A. Maddox, and R.J. Safranek. Intel QuickPath Interconnect archi-
tectural features supporting scalable system architectures. In Proc. 18th Annual Symposium
on High Performance Interconnects, HOTI’10, pages 1–6, August 2010. doi:10.1109/HOTI.
2010.24.

[ZCHB03] V.V. Zhirnov, III Cavin, R.K., J.A. Hutchby, and G.I. Bourianoff. Limits to binary logic
switch scaling - a gedanken model. Proc. IEEE, 91(11):1934–1939, nov 2003. ISSN 0018-9219.
doi:10.1109/JPROC.2003.818324.

[Zit08] Jonathan Zittrain. The Future of the Internet—And How to Stop It. Yale University Press, first
edition, April 2008. ISBN 978-0300124873. Available from: http://futureoftheinternet.
org/download.

[ZJ07] Li Zhang and Chris R. Jesshope. On-Chip COMA Cache-Coherence Protocol for Microgrids
of Microthreaded Cores. In Bouge and et al., editors, Euro-Par Workshops, volume 4854 of
LNCS, pages 38–48. Springer, 2007.

http://dx.doi.org/10.1109/2.348001
http://dx.doi.org/10.1109/4.509850
http://dx.doi.org/10.1109/4.509850
http://dx.doi.org/10.1145/216585.216588
http://dx.doi.org/10.1145/216585.216588
http://dx.doi.org/10.1145/1882362.1882448
http://dx.doi.org/10.1145/1147349.1147359
http://dx.doi.org/10.1002/(SICI)1096-9128(199809/11)10:11/13<825::AID-CPE383>3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1096-9128(199809/11)10:11/13<825::AID-CPE383>3.0.CO;2-H
http://dx.doi.org/10.1109/HOTI.2010.24
http://dx.doi.org/10.1109/HOTI.2010.24
http://dx.doi.org/10.1109/JPROC.2003.818324

Index

abstract computing models, 19
accelerators, 24, 36, 197
active messages, 49, 55, 236
Actors, 193
adaptability, 22
allocation

allocate instruction, 79, 259
failure, 64, 167
memory, 85, 110, 230
requests, 56

Apple-CORE, 89, 237
assembler, 79, 259
asynchronous

completions, 46
event signalling, 49, 225, 236, 240
FPU, 47
operations, 61

atomic transactions, 74, 117, 224
atomicity anomalies, 130

backward compatibility, 84
barrel processors, 40
branches

context switches, 47
delayed, 72

bulk
creation & synchronization, 52, 63
creation contexts, 62
synchronizers, 62, 164

C language
compiler, 103
freestanding environment, 103
hosted environment, 113
objects and variables, 270
standard library, 92, 112

cache
coherency, 53, 118, 224

conflicts due to thread-local storage,
154

D-cache (data), 48
I-cache (instructions), 44, 51, 253
protocols, 118

calling conventions, 76, 143, 312
capabilities, 177, 227, 265
carried state, 228
Cell Broadband Engine, 28, 197
Chapel, 101, 102, 166, 183, 241
Cilk, 101, 102, 109, 132, 166, 221
clusters of cores, 56, 66, 177, 204, 231, 264
Co-Array Fortran, 132
code generation, 103, 138, 294
Communicating Sequential Processes, 191
communication domains, 124, 181
communicators, 125
companion cores, 92, 110, 227
compiler combinators, 104
computer science, 18
computing ecosystem, 84, 85
concurrency

abstract definition, 120
functional, 213
management, 40, 55
resources, 164
virtualization, 164

concurrent programming
declarative, see declarative concurrency
resource-aware, 165
virtualized, resource-agnostic, 165

consistency, 116, 123
domains, 124, 181
granularity, 130
interaction with placement, 181
sequential, 118

constellation topology, 232

367

368 INDEX

context resources
allocation, 64, 149
bulk creation, 62, 164
configuration, 79
dataflow synchronizers, 62
de-allocation, 65, 79
threads, 60, 164

context switches
after branches, 47
cost of software schedulers, 41
during fetch, 45
switch hints, see control bits

continuations, 47, 61, 224
control bits, 71, 251, 254
create

create instruction, 80, 259
sl_create, 103, 170, 327
sl_spawn, 108
specifiers, 170, 312, 327

critical path, 35, 48, 76, 172, 225, 229
cross-compilation, 111
cryptographic kernels, 217

D-RISC, 44
dataflow

scheduling, 28, 47
state bits, 44
synchronizers, 60, 121, 138

deadlocks, 47, 75, 77, 122, 124, 189, 313
declarative concurrency, 101, 166, 185, 239
decode stage, 44, 72
delay slots, 72
delegation

load balancing, 215
network, 56, 119
requests, 55, 176
system services, 94

designators for C objects, 273
detached creation, 65, 107, 307
distributed cache network, 53
distribution

logical indices, 66
network, 56, 265
of TLS addresses to threads, 151
threads, 56, 176, 264

early feedback, 84
embedding vs. encapsulation of ISA fea-

tures, 99

end annotation, 71, 79
Erlang, 98
escaping argument to memory, 108, 145

faithfulness, 102
families, 53, 63, 164

abstract definition, 120
fetch stage, 44, 45, 72, 253
-ffixed-reg, 105, 296
sl__forceseq, 170
sl__forcewait, 170
Fortress, 132, 183
Field-Programmable Gate Array, 28, 38,

53, 77, 90, 92, 160, 198, 244, 245,
307

Floating-Point Unit, 37, 47, 113, 212, 226
FreeBSD, 112
freestanding C environment, 103
fungibility, 38
fused creation, 65, 107, 302
futures, 108

GNU C Compiler, 103, 207, 294
general-purpose

abstract machine models, 19
computing, 19, 238
platforms, 88
specializable systems, 22

generality
of the SL compilation techniques, 105
requirements, 19, 117, 148, 188, 238

getcid instruction, 177, 259
getfid instruction, 159, 259
getpid instruction, 177, 259
gettid instruction, 159, 259
Go, 98, 132
great coordinator, 117

heap memory, 85, 109, 110, 230, 232
heterogeneity

dynamic, 38
static, 36, 37

heterogeneous integration, 94
HIMCYFIO, 26, 87, 238
hosted C environment, 113

I-variables, 60, 236
implicit communication, 116, 117
innovation, 16

INDEX 369

input and output, 40, 51, 84, 92, 94, 110,
111, 117, 120, 188, 189, 224, 226,
229, 231, 232, 243

instruction annotations, see control bits
instruction encoding, 259
instruction stream, 34
interrupts, 49, 92, 188, 225, 236
Inter-Processor Interrupt, 55, 92, 198
ISA extensions, 60, 259
isolation, 265

language primitives
encapsulation vs. embedding, 99
specification, 318

ldbp instruction, 159, 259
ldfp instruction, 159, 259
lifetime of C variables, 270
Livermore loops, 205
load balancing, 67, 210, 215
locality, 21
long latency operations, 46
Load-Store Unit, 45

Manchester dataflow machine, 27
Mandelbrot set approximation, 210, 339
Memory Control Unit, 45
memory

architecture, 53, 240
bandwidth, 218
bank conflicts due to thread-local stor-

age, 154
communicators, 125
consistency, 116, 181, 233
model, 53, 116
network, 56
reclamation, 158, 230
scratchpads, 117
wall, 25, 39, 232

MGSim, 77, 92, 160, 249
microthreading, 1, 28
Memory Management Unit, 156, 226
models

Actors, 193
asymmetry pitfall, 36
computing, 19
concurrency, 188
CSP, 191
memory, 53, 116, 233

π-calculus, 194
Monsoon architecture, 27
Moore’s law, 25
multi-threading, 39
multikernel, 94
mutual exclusion, 131, 224

networks
bandwidth, 219
on-chip, 56
topology, 57, 219

Niagara architecture, 48

OpenCL, 109, 241
OpenMP, 40, 109, 166, 184
opportunity loss, 24, 36, 244
over-synchronization, 229

parallel prefix scan, 220
performance

limitation from memory bandwidth,
218

single-thread, 34
performance impact of bank switching, 218
performance per watt, 37, 215
π-calculus, 194
pipeline hazards, 47
pipeline stages

fetch, see fetch stage
placement, 62, 176, 264, 312

inheritance, 66
post-processor, 295
predication, 73
preemptive task multiplexing, 40
processes, 232, 240, 265
program counter, 44
protocols, 37, 118

placement, 264

questions
inner vs. outer, 26, 237, 243
research, 2

quick sort, 171, 213, 333

race conditions, 229
read stage, 45
reentrant code, 229
reference counting, 230
register windows

370 INDEX

base offset, 44
configuration, 51, 67, 138, 236
layout, 70
sliding, 51
visible, 62

registers
allocation during code generation, 140,

296
classes, 73
dataflow state, 44
global, 68, 294
local, 62, 68
names, 51, 79, 138
remote access, 55
shared, 220, 301
spills, 142, 143, 312
substitution table, 297, 309

.registers directive, 79, 294
release instruction, 80, 259
remote register access, 55
resources

contention, 230
fungibility, 38
management, 37, 164
mandatory clustering, 232
shared, 229
virtual, 164
virtual resource identifiers, 158

REpresentational State Transfer, 116, 232
Register Files, 44
Register File ports, 46

Single-Assignment C, 89, 166, 204, 230
save and restore instructions, 313
Intel SCC, 198
scheduling, 120

queues, 44, 46
scope of C variables, 270
scratchpad memory, 117
segment prefix, 121
separate compilation, 141, 312
sequential consistency, 118
sequential performance wall, 25
sequential segment, 121
sequentialization, 146, 166, 224, 229, 266,

309
serializability, 102, 170, 233
serialization, see sequentialization

shared memory, 116
interaction with placement, 181

side effect, 117
Single-Chip Cloud Computer, 198
SISAL, 27
SL

future extensions, 196
introduction, 103
placement primitives, 266
specification, 318

slc, 103, 315
Simultaneous Multi-Threading processors,

40
space scheduling, 40
sl_spawn, 108
specializable systems, 22
specialization, 37
SPMD/SIMD, 34, 41, 53, 219
stack, see thread-local storage
stem cells of computing, 21, 88
storage

abstract purpose, 116
duration of C objects, 270, 321
persistent, 110
thread-local, 148, 172
virtualization, 227

SVP, 189
swch annotation, 71, 79
synchronization

memory, 116
on termination, 52, 55, 121
sl_sync, 103
sync instruction, 80, 259
transactions, 116

synchronizers
abstract definition, 121
separated vs. hanging, 69, 80, 142,

144, 303, 307
synchronous operations, 61
system

architecture overview, 94
evaluation, 84, 101
implementation strategy, 92
integration, 87, 94
operating system services, 110
portability, 91

Threading Building Blocks, 109, 166

INDEX 371

thread
abstract definition, 120
active queue, 44
allocation, 56
automatic distribution, 56
control events, 48
creation & termination, 48
distribution, 62, 210
family, see families
logical, 49, 60
logical index, 52
physical context, 49, 60
ready queue, 46
safety, 229
scheduler, 44
switching, 45, 71
synchronization, 52
table, 45
waiting queue, 46, 224

thread-local storage, 148
address-based partitioning, 153
cache & bank conflicts, 154
generality, 148
persistent allocation, 150
pre-allocation, 148
pre-reservation, 151
reclamation, 158
self-allocation, 149
storage for spills and arguments, 108,

145
TLB pressure, 156

threads
distribution, 264
logical, 164

Tilera’s TILE architecture, 198
Titanium, 132
Translation Lookaside Buffer

pressure due to TLS, 156
Thread Management Unit, 44
Transmeta Crusoe, 27
traps, 49, 92, 225
Turing machine, 19, 148, 188, 195

Unified Parallel C, 132, 184, 241
µTC, 98, 278
UTLEON3, 53, 77, 92, 98, 160, 226, 241,

307

virtual address translation, 156, 227, 230

window size
number of threads per core, 66
register window size, 51, 138

writeback stage, 45

X10, 184

	Contents
	List of Figures
	List of Tables
	List of Side Notes
	Listings
	Summary
	Samenvatting in het Nederlands
	Acknowledgements
	Preface
	Introduction
	Birdview epistemology
	Computer science
	Stem cells of computing
	Losing sight of generality
	Achilles' heel of designers
	Case study: hardware microthreading
	Overview

	Hardware microthreading: exploring the designer's mind
	Trade-offs in microprocessor design
	Introduction
	Size matters
	Sequential performance
	Limits of specialization
	Dynamic heterogeneity
	Fine-grained multi-threading
	Hardware concurrency management
	Summary

	Architecture overview
	Introduction
	Core micro-architecture
	Concurrency management within cores
	Multi-core architecture
	Summary

	Machine model & hardware interface
	Overview
	Concepts
	Semantics
	Out of band control bits
	Interactions with a substrate ISA
	Faults and undefined behavior
	Specific implementations and their interfaces
	Assembler and assembly language
	Summary

	Foreground contribution: programmability
	System perspective
	Introduction
	Computing ecosystems
	Proposed dialogue scenario and opportunities
	Case study: hardware microthreading
	Platform definition
	Summary

	Programming environment
	Prior work
	Guiding considerations for an interface language
	Proposed code generator
	Operating software services
	Summary

	Disentangling memory and synchronization
	Introduction
	Extending C with memory-independent synchronization
	Extending C with multi-thread consistency
	Examples of incorrect synchronization
	Pitfall: atomicity anomalies
	Relationship with the latest C and C++ specifications
	Position of the model from the programmer's perspective
	Other related work
	Summary

	Visible synchronizer windows
	Introduction
	Formalism
	General constraints
	Degree of freedom from register allocation
	Strategies for synchronizer mapping
	Summary

	Thread-local storage
	Introduction
	``Traditional'' provisioning of TLS
	Smarter provisioning of TLS
	Implementation
	Integration with the machine interface
	Summary

	Concurrency virtualization
	Introduction
	Context and related work
	Controllable automatic serialization
	Limitations and future work
	Summary

	Placement and platform partitioning
	Introduction
	On-chip work placement: exposing control
	On-chip work placement: how to exploit
	Summary

	Issues of generality
	Introduction
	Turing-completeness: one and also many
	Abstract concurrency models
	Turing completeness, take two
	Exposing the generality to software
	Generality in other designs
	Summary

	Applications and experiences
	Core evaluation
	Introduction
	Evaluation efforts from the ecosystem
	Separate impact of multi-threading and load balancing
	Applicability to irregular functional concurrency
	Optimization of performance per watt
	Applicability to throughput-oriented applications
	Issues of system bandwidths, design trade-offs
	Relevance of thread-to-thread sharings
	Summary

	System-level issues
	Mutual exclusion
	Event and fault management
	Virtual addressing trade-offs
	Implicitly carried state
	Process state, termination and reclamation
	Feedback from education activities
	Summary

	Conclusions and future work
	Design principles and opportunities
	Inner vs. outer questions: a retrospective
	Where to go from here?

	Epilogue on the outer question

	Appendices
	Information sources for the hardware interface
	Optimal control word size analysis
	Running example with machine code
	Machine instructions
	On-chip placement and distribution
	General protocol
	Reference implementation
	SL primitives

	Semantics of C objects
	Fundamental characteristics
	Basic operations
	Syntax in the C language
	Space for optimization
	Lexical binding of lifetimes and resource allocation
	Primary designators
	Secondary designators
	The fine print in the C semantics

	Original language interface
	Analysis of pre-existing sources
	Hidden complexity
	Fundamental problem
	Summary and conclusion

	Approach to code generation
	Thread programs and ``global'' channels
	Multiple channel endpoints
	``Shared'' channel endpoints
	Bulk creation
	Sequential schedule
	Floating-point channels
	Declarations & separate compilation
	Extending bulk creation
	Support for function calls
	Resulting compilation chain

	SL Language specification
	Prologue
	Terms and definitions
	Conformance
	Environment
	Language
	Library

	QuickSort example
	Benchmark program
	Input and baseline
	Multi-threaded behavior

	Mandelbrot set approximation

	Acronyms
	Related publications by the author
	Bibliography related to hardware microthreading
	General bibliography
	Index

